Control Systems and Computers, N1, 2017, Article 5


Upr. sist. maš., 2017, Issue 1 (267), pp. 46-58.

UDC 519.6

O.N. Lytvyn 1, O.O. Lytvyn 2, G.D. Lisny 3, A.V. Slavik 4

The New Method of Image Recovery in the Areas of Absence of Information About Pixels

1 – Doctor of Physical and Mathematical Science, Ukrainian Engineering Pedagogics Academy Kharkiv, 61003 vul. Universitets’ka, 16, Ukraine, E-mail: ,

2 – PhD of Physical and Mathematical Science, Ukrainian Engineering Pedagogics Academy Kharkiv, 61003 vul. Universitets’ka, 16, Ukraine, E-mail:,

3 –  Doctor of Geological Sciences, Kyiv National University named after Taras Shevchenko, LLC “Tutkowski integrated solutions “, Kiev, Ukraine,

4 –  Post graduate student, Ukrainian Engineering Pedagogics Academy Kharkiv, 61003 vul. Universitets’ka, 16, Ukraine, E-mail:

Introduction. Sometimes in the files containing the graphics information defects (empty subareas of image, etc.) are detected. So, it is urgent to develop the methods for image reconstruction in those parts, where the information is missing, or it is not fully known (for example, damaged).

Purpose.  The task of restoring the image in the areas of absence of information about pixels is extremely important. Such problems arise in engineering, seismography, processing of remote sensing data, etc. To solve such problems Lytvyn O.N. and Matveeva S.Y. has developed the method of interstripation, that are received from satellites or from radar installed on airplanes. In given work this method has been used as a basis to create a modified method of interstripation.

Results. In this article the theoretical foundations of modified method of interstripation and the standard method of interstripation are presented. The computational experiments are carried out for the cases where the unidentified area are presented as a system of horizontal, vertical or orthogonally related stripes. In all cases the images are restored by the modified method of interstripation and the standard method of interstripation. The obtained results are compared between themselves and with the original image.

Keywords: image, image recovery, interstripation, modified interstripation.

Download full text!

  1. Lytvyn, O.M., Matvjejeva, S. Ju., Mezhujev, V. І., 2003. “Metamodel dlja matematychnogo modeljuvannja poverhni tila na osnovi danyh radiolokacii”. Upravlausie sistemy i masiny, 3, pp. 33–47 (In Ukrainian).
  2. Lytvyn, O. M., Matvjejeva, S. Ju., 2011. “Metod vidnovlennja poverhni mizh smugamy za dopomogoju informacii’ pro poverhnju na vzajemnoperpendykuljarnyh smugah”. Upravlausie sistemy i masiny, 1, pp. 33–41 (In Ukrainian).
  3. Lytvyn, O. M., Matvjejeva, S. Ju., 2013. “Interstripacija funkcij dvoh zminnyh na systemi peretynnyh smug”. Upravlausie sistemy i masiny, 2, pp. 33–41 (In Ukrainian).
  4. Lytvyn, O. M., Matvjejeva, S. Ju., 2013. “Obrabotka aerokosmicheskikh snimkov s pomoshch’yu interstripatsii funktsiy dvokh peremennykh”. Problemy upravleniya i informatiki, 2, pp. 111–124 (In Russian).
  5. Joshua, J., Darsan, G., 2016. “Digital inpainting techniques – a survey”. International Journal of Latest Research in Engineering and Technology, 2, pp. 34–36.
  6. Heeger, D. J., Bergen, J.R., 1995. “Pyramid-based texture analysis/synthesis”. In Proc. of ACM Conf. Comp. Graphics (SIGGRAPH), 29, pp. 229–233.
  7. Yamauchi, H., Haber, J., Seidel, H., 2003. “Image restoration using multiresolution texture synthesis and image inpainting”. Computer Graphics International, pp. 120–125.
  8. Criminisi, A., Perez, P., Toyama, K., 2004. “Region filling and object removal by exemplar-based inpainting”. IEEE Transactions on Image Processing, 13, pp. 1200–1212.
  9. Drori, I., Cohen-Or, D., Yeshurun, H., 2003. “Fragment – based image completion”. Proceedings of ACM Conf. Comp. Graphics (SIGGRAPH), pp. 303–312.
  10. Hays, J., Efros, A., 2007.  “Scene completion using millions of Graphics”. Computer Graphics Proceedings (SIGGRAPH).
  11. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C., 2000. “Image inpainting”. Proc. of the 27th Annual Conf. on Computer Graphics and Interactive Techniques, pp. 417–424.
  12. Tschumperi, D., Deriche, R., 2005. “Vector-valued image regularization with PDE’s: A common framework for different applications”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, pp. 506–517.
  13. Sun, J., Yuan, L., Jian, J., Shum, H.-Y., 2005. “Image completion with structure propagation”. Proc. of ACM Conf. Comp. Graphics, pp. 1–8.
  14. Oliviera, M., Bowen, B., McKenna, R., Chang, Y.-S., 2001. “Fast digital image inpainting”. Proc. of Intl. Conf. on Visualization, Imaging and Image Processing, pp. 261–266.
  15. Lytvyn, O. M., 1992. Interlinacija funkcij, Kharkiv, Osnova Publ., 234 p. (In Ukrainian).
  16. Lytvyn, O. M., 2002. “Interlinacija funkcij ta dejaki i’i’ zastosuvannja”, Kharkiv, Osnova Publ., 544 p. (In Ukrainian).

Received 09.04.2015