Control Systems and Computers, N3, 2022, Article 1
https://doi.org/10.15407/csc.2022.03.003
Control Systems and Computers, 2022, Issue 3 (299), pp. 3-10
UDC 514.18
Iu.V. Sydorenko, PhD (Eng. Sc.), Assistant Professor, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Prosp. Peremohy, Kyiv, Ukraine, 03056, ORCID: https://orcid.org/0000-0002-1953-0410, suliko3@ukr.net
A.I. Onysko, Ph.D. (Mil. Sc.), Associate Professor, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Prosp. Peremohy, Kyiv, Ukraine, 03056, ORCID: https://orcid.org/0000-0001-7178-1471, kw_fedun@ukr.net
O.V. Shaldenko, PhD (Eng. Sc.), National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Prosp. Peremohy, Kyiv, Ukraine, 03056, ORCID: https://orcid.org/0000-0001-6730-965X, o.shaldenko@gmail.com
M.V. Horodetskyi, PhD Student, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Prosp. Peremohy, Kyiv, Ukraine, 03056, ORCID: https://orcid.org/0000-0003-4673-3894, horodetkyimykola@gmail.com
INTERPOLATION OF DIFFERENT TYPES OF SPIRAL-LIKE CURVES
BY GAUS-INTERPOLATION METHODS
The methods of Gaussian interpolation of helical curves are studied in the article. A comparative analysis with the standard Lagrange method was carried out. The results of the work of Gaussian methods with different types of interpolation steps are demonstrated. Recommendations on the optimal choice of method for spiral curves are offered. An analysis of each of the Gauss interpolation methods on the most common types of spirals has been carried out. A solution for input data with a non-constant step is proposed.
Download full text! (On English)
Keywords: interpolation, Gaussian interpolation function, spiral curves, interpolation step, interpolation error.
- Lukianenko, S.O. (2007). Chyselovi metody v informatytsi, Teaching manual, Kyiv, 140 p. (In Ukrainian).
- Ausheva, N.M., Melnyk, O.V., Homov, V.V. (2017). “Modeliuvannia PH-kryvykh u vyhliadi fundamentalnoho splainu “, Modern problems of modeling. Part 3, MSPU B. Khmelnitsky, Melitopol, pp. 20-25 (In Ukrainian).
- Badayev, Yu.I., Blindaruk, A.O. (2014). “Kompiuterna realizatsiia proektuvannia kryvoliniinykh obvodiv proektuvannia kryvoliniinykh obvodiv metodom NURBS – tekhnolohii vyshchykh poriadkiv “, Modern problems of modeling. Part, MSPU B. Khmelnitsky, Melitopol, pp. 3-6 (In Ukrainian).
- Badayev, Yu.I., Isaienko, S.A. (2012). “NURBS-interpoliatsiia na osnovi duhopodibnoi napravliaiuchoi kryvoi “, Applied geometry and engineering graphics: interdepartmental scientific and technical collection, KNUBA, Kyiv, pp. 55-59 (In Ukrainian).
- Looker, J.R. (2011). Constant Speed Interpolating Paths. DSTO Defence Science and Technology Organisation AR 014-939. DSTO-TN-0989.
- Badayev, Yu.I., Sydorenko, Yu.V. (1998). “Realizatsiia interpoliatsiinoho metodu Gaus-funktsii ta porivnialnyi analiz “, Applied geometry and engineering graphics, KNUCA, Kyiv, pp. 33-37 (In Ukrainian).
- Sydorenko, Yu.V. (2014). “Parametrychna interpoliatsiina funktsiia Gausa”, Computer modeling in chemistry, technologies and steel development systems, Collection of scientific articles of the Fourth international scientific and practical conference, Igor Sikorsky NTUU KPI, Kyiv, pp. 67-73 (In Ukrainian).
- Sydorenko, Yu.V., Horodetskyi, M.V. (2020). “Analіz roboti algoritmu іnterpolyacіjnoї funkcії Gausa na elementarnih algebrichnih funkcіyah “, Modern problems of modeling, MSPU B. Khmelnitsky, Melitopol, pp. 138-145 (In Ukrainian).
- Sydorenko, Yu.V., Horodetskyi, M.V. (2021). “Modification of the algorithm for selecting a variable parameter of the Gaussian interpolation function”. Control Systems and Computers, 2020, Issue 6 (290), pp. 2128.
https://doi.org/10.15407/csc.2020.06.021 - Sydorenko, Iu., Zalevska, O., Horodetskyi, M., Naidysh, A. (2022). “Peculiarities of location of basic nodes of Gausfunction on the example of spiral-curved curves”. Modern problems of modeling, 2022, MSPU B. Khmelnitsky, Melitopol, pp.151-158 (In Ukrainian).
Received 04.10.2022