Control Systems and Computers, N4, 2023, Стаття 2

https://doi.org/10.15407/csc.2023.04.012

Sydorenko Iu.V., Horodetskyi M.V. Modification of the Algorithm for Defining Polygonal Geometry of an Object for Polypoint TransformationsControl Systems and Computers. 2024. № 4. С. 12-18

УДК 514.18

Ю.В. СИДОРЕНКО, канд. техн. наук, доцент, Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», 03056, м. Київ, просп. Перемоги, 37, Україна, ORCID: https://orcid.org/0000-0002-1953-0410suliko3@ukr.net

М.В. ГОРОДЕЦЬКИЙ, аспірант, Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», 03056, м. Київ, просп. Перемоги, 37, Україна, ORCID: https://orcid.org/0000-0003-4673-3894horodetskyimykola@gmail.com

МОДИФІКАЦІЯ АЛГОРИТМУ ЗАДАННЯ ПОЛІГОНАЛЬНОЇ ГЕОМЕТРІЇ ОБ’ЄКТА ДЛЯ ПОЛІТОЧКОВИХ ПЕРЕТВОРЕНЬ

Вступ. У наш час інженери вимушені регулярно проводити перевірку технічного стану об’єктів для виявлення деформацій, що є важливим для забезпечення надійної, безвідмовної та прогнозованої роботи елементів конструкцій. Проблеми деформацій також актуальні у медицині, де відтворення пошкоджених органів може бути життєво важливим, особливо під час воєнних конфліктів. У розв’язанні задач деформаційного моделювання застосовують політочкові перетворення, які дозволяють швидко отримувати математичну модель перетворень у залежності від наслідків деформацій, використовуючи політочкове представлення об’єкт.

 Метою дослідження є розібрати існуючі проблеми задання гометрії об’єкта для політочкових перетворень і розробити практичний та гнучкий підхід для їх вирішення на базі полігональної геометрії.

Методи. Для виконання проведеного дослідження застосовано метод задання геометрії об’єкта через шлях або поліглн, а також метод політочкових перетворень для отримання видозміненого праобразу вхідної геометрії об’єкта.

Результати. У статті досліджуються існуючі обмеження щодо зажання геометрії об’єкта на двовимірному просторі та наводиться модифікований алгоритм задання об’єкту для проведення політочкових перетворень на базі полігонів, а також представлення об’єкта після застосування вказаного методу.

Висновки. За результатами дослідження виявилось, що модифікований алгоритм задання геометрії об’єкта на базі полігонів є зручним, не потребує додаткових обчислень і за допомогою цього підходу можливо задати геометрію для об’єкта будь-якої складності, придатну для застосування мотоду політочкових перетворень.

 Завантажити повний текст в PDF (англійською).

Ключові слова: полікоординатні відображення, політочкові перетворення, полігон, базис перетворення, об’єкт перетворення.

  1. Бадаєв Ю.І., Дорошенко Ю.О. Варіанти політканинних перетворень. Прикл. геометрія та інж. графіка. К.: КДТУБА, 1995. Вип. 58. С. 39-42.
  2. Badayev Yu .I. Geometric modeling of curvilinear contours of complex objects: навч. посіб. / Ю.І. Бадаев. К.: Інтерсервіс, 2019. 240 с.
  3. Сидоренко Ю.В., Шалденко О.В. Візуалізація об’єктів політочкових перетворень за допомогою інтерполяційної функції Гауса. Сучасні проблеми моделювання. 2020. Вип.17. С.108-114.
  4. Сидоренко Ю.В., Залевська О.В. Підвищення точності алгоритму політочкових перетворень. Прикладна геометрія та інженерна графіка. 2020, вип.97. С.129-135.   
  5. Сидоренко Ю.В., Залевська О.В., Шалденко О. В. Обчислення площі перетвореного об’єкта при політочкових перетвореннях. Прикладна геометрія та інженерна графіка. 2022. Випуск 102. Київ. С.65-75
  6. Sidorenko Yu, Kryvda O., Leshchynska I. System of modeling of structural elements of ventilation systems by polycoоrdinate transformations. Strength of Materials and Theory of Structures. 2020. No. 104. P. 221-228.
  7. Сидоренко Ю.В., Шалденко О.В. Вагові політочкові перетворення при моделюванні можливих результатів пластичної хірургії. Сучасні проблеми моделювання. 2019. Вип.15. С. 151-161.

Надійшла 12.10.2023