Control Systems and Computers, N6, 2018, Article 5

DOI: https://doi.org/10.15407/usim.2018.06.074

Upr. sist. maš., 2018, Issue 6 (278), pp. 74-80.

UDC 681.513.7

Yaroslav M. Antonyuk, researcher, E-mail: ant@noc.irtc.org.ua,

Tetiana N. Oleksyuk, engineer,

Yaroslav A. Kovalenko, engineer,

Bogdan A. Shiyak, researcher,

International Research and Training Centre of Information Technologies and Systems of the NAS and MES of Ukraine, Glushkov ave., 40, Kyiv, 03680, Ukraine

The Principles of Application of Machine Learning in Classification of Network Traffic

Approaches to classification of network computing traffic on the basis of division of DPI and methods of structural analysis are systematized. The illustration of one of methods of structural analysis is developed. The algorithm which is possible for implementing in vitro is given. Perspectives of use of the given systematization are planned.

 Download full text! (In English)

Keywords: DPI, analysis of network traffic, network safety, classification of network traffic, machine learning

  1. Getman, A.I., Markin, Yu.V., Evstropov, E.F., Obydenkov, D.O., 2017. “Obzor zadach i metodov ikh resheniya v oblasti klassifikatsii setevogo trafika”. Trudy ISP RAN, 29 (3), pp. 117-150. (In Russian).
    DOI: 10.15514/ISPRAS-2017-29(3)-8.
    https://doi.org/10.15514/ISPRAS-2017-29(3)-8
    DOI: 10.15514/ISPRAS-2017-29(3)-8.
  2. Yeon-sup Lim, Hyun-chul Kim, Jiwoong Jeong. Internet Traffic Classification Demystified: On the Sources of the Discriminative Power. [online] Available at: <http://conferences.sigcomm.org/co-next/2010/CoNEXT_papers/09-Lim.pdf> [Accessed 11 Oct. 2018].
  3. Kuzmin, V.V., 2014. Klassifikatsiya i identifikatsiya trafika v multiservisnoy seti operatora svyazi. Sovremennyye problemy nauki i obrazovaniya, 5. [online] Available at: <https://www.science-education.ru/ru/article/view?id=15039> [Accessed 11 Oct. 2018].
  4. Shelukhin O.I.. Erokhin S.D.. Vanyushina A.V. Klassifikatsiya IP-trafika metodami mashinnogo obucheniya Izdatelstvo: M.: Goryachaya liniya – Telekom 2018 stranits: 283
  5. Mashinnoye obucheniye vmesto DPI. Stroim klassifikator trafika. [online] Available at: <https://habr.com/post/304926/> [Accessed 11 Oct. 2018].
  6. Random_forest. [online] Available at: <https://ru.wikipedia.org/wiki/Random_forest1> [Accessed 11 Oct. 2018].

Received 04.12.18