Control Systems and Computers, N4, 2018, Article 6

DOI: https://doi.org/10.15407/usim.2018.04.070

Upr. sist. maš., 2018, Issue 4 (276), pp. 70-83.

UDC 574: 004.2 

Reshetnykov Denys S., Post-graduate student, International Research and Training Center for Information Technologies and Systems of the NAS and MES of Ukraine, Glushkov ave., 40, Kyiv, 03187, Ukraine, e-mail: denis.reshetnykov@gmail.com

 EEG ANALYSIS OF PERSON FAMILIARITY WITH AUDIO-VIDEO DATA ASSESSING TASK

To solve the problem of assessing a person’s familiarity with audio-video data, various methods of machine learning were compared. The feature space has been optimized for the best way to make such an assessment. The high efficiency of the genetic algorithm in the problem of optimizing the space of attributes is shown.

Download full text! (On English).

Keywords: machine learning, genetic algorithm, electroencephalogram, DEAP dataset, emotion recognition.

  1. Aleksandrov, Yu.I., 2012. “Psihofiziologicheskie zakonomernosti naucheniya i metodyi obucheniya”. Psihologicheskiy zhurnal, 33 (6), pp. 5–19. (In Russian).
  2. Liping Shen, Minjuan Wang and Ruimin Shen, 2009. “Affective e-Learning: Using “Emotional” Data to Improve Learning in Pervasive Learning Environment”. Journal of Educational Technology & Society, Vol. 12, No. 2, pp. 176-189
  3. Hadjidimitriou, S.K.; Hadjileontiadis, L.J., 2013. “EEG-based classification of music appraisal responses using time-frequency analysis and familiarity ratings”. IEEE Trans. Affect. Comput., 4, pp. 161–172.
    https://doi.org/10.1109/T-AFFC.2013.6
  4. Nattapong Thammasan, Koichi Moriyama, Ken-ichi Fukui, Masayuki Numao, 2017. Familiarity effects in EEG-based emotion recognition. Brain Informatics, 4, pp. 39–50.
    https://doi.org/10.1007/s40708-016-0051-5
  5. Rostami Shahin, Shenfield Alex, Sigurnjak Steve, Fakorede Oluwatoyin, 2015. “Evaluation of mental workload and familiarity in human computer interaction with integrated development environments using single-channel EEG”. In: 26th Annual Workshop of PPIG, Bournemouth University, July 2015.
  6. Cheng Yang, Fang An, Chen Chen, Bin Zhu, 2017. The effect of product characteristic familiarity on product recognition. IOP Conf. Series: Materials Science and Engineering, 231.
    https://doi.org/10.1088/1757-899X/231/1/012016
  7. Meng-Hsien (Jenny) Lin, Samantha N.N. Cross, William J. Jones, Terry L. Childers, 2018. “Applying EEG in consumer neuroscience”, European Journal of Marketing, 52 (1/2).
  8. Jose Paulo Marques dos Santos, Marisa Martins, Hugo Alexandre Ferreira, Joana Ramalho, Daniela Seixas, 2016. “Neural imprints of national brands versus own-label brands”, Journal of Product & Brand Management, 25 (2), pp.184-195.
    https://doi.org/10.1108/JPBM-12-2014-0756
  9. Novikova, S.I., 2015. “Ritmyi EEG i kognitivnyie protsessyi” [Elektronnyiy resurs]. Psihologicheskaya nauka i obrazovanie psyedu.ru, T. 4, 1, pp. 91—108, http://psyjournals.ru/jmfp/ 2015/n1/76178.shtml> [Accessed 20 Aug. 2018]. (In Russian).
  10. Kahana, M.J., 2006. “The cognitive correlates of human brain oscillations”. Journal of Neuroscience, 26 (6), pp. 1669-1672.
    https://doi.org/10.1523/JNEUROSCI.3737-05c.2006
  11. Naumov, R.A., 2010. Raspoznavanie tipov myislitelnoy deyatelnosti po EEG pri reshenii prostranstvennyih i verbalno-logicheskih zadach. Diss. kand. biol. nauk., 28 p. (In Russian).
  12. Roik, A. O., Ivanitskiy, G. A., Ivanitskiy, A. M., 2012. “Kognitivnoe prostranstvo cheloveka: sovpadenie modeley, postroennyih na osnove analiza ritmov mozga i na psihometricheskih izmereniyah”. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova, 98 (11), pp. 1314-1328. (In Russian).
  13. Sotnikov, P. I., 2014. Obzor metodov obrabotki signala elektroentsefalogrammyi v interfeysah mozg-kompyuter. Inzhenernyiy vestnik, pp. 13-24. (In Russian).
  14. Bureeva, N.N., 2007. “Mnogomernyiy statisticheskiy analiz s ispolzovaniem PPP “STATISTICA””. Uchebno-metodicheskiy material po programme povyisheniya kvalifikatsii “Primenenie programmnyih sredstv v nauchnyih issledovaniyah i prepodavanii matematiki i mehaniki”. Nizhniy Novgorod, 112 p. (In Russian).
  15. Ermachenko, N.S., Ermachenko, A.A., Latanov, A.V., 2011. “Desinhronizatsiya EEG na chastote alfa-ritma kak otrazhenie protsessov zritelnogo selektivnogo vnimaniya”. Fiziologiya cheloveka, 37(6), pp. 18-27 (In Russian).
  16. Naumov, R. A., 2010. Raspoznavanie tipov myislitelnoy deyatelnosti po EEG pri reshenii prostranstvennyih i verbalno-logicheskih zadach. Diss. kand. biol. nauk. T. 3. n. 01.
  17. Casey, B.J., Giedd, J.N., Thomas, K.M., 2000. “Structural and functional brain development and its relation to cognitive development”. Biological psychology, 54 (1-3), pp. 241-257.
    https://doi.org/10.1016/S0301-0511(00)00058-2
  18. Norkin, V.I., Kayzer, M.A., 2009. “Ob effektivnosti metodov klassifikatsii, osnovannyih na minimizatsii empiricheskogo riska”. Kibernetika i sistemnyiy analiz, 5, pp. 93-105. (In Russian).
  19. Bartlett, P., Shawe-Taylor, J., 1998. Generalization performance of support vector machines and other pattern classifiers. Advances in Kernel Methods. MIT Press, Cambridge, USA.
  20. Voronov, I.V., Politov, E.A., Efremenko, V.M. “Obzor tipov iskustvennyih neyronnyih setey i metodov ih obucheniya”. Elektrotehnicheskie kompleksyi i sistemyi, pp. 38-42. (In Russian).
  21. Chistyakov, S.P., 2013. “Sluchaynyie lesa: obzor”. Trudyi Karelskogo nauchnogo tsentra RAN, 1, pp. 117–136. (In Russian).
  22. Dyakonov, A.G., 2010. “Analiz dannyih, obuchenie po pretsedentam, logicheskie igryi, sistemyi WEKA, RapidMiner i MatLab”: Uchebnoe posobie. M.: Izdatelskiy otdel fakulteta VMK MGU imeni M.V. Lomonosova. (In Russian).
  23. Koelstra, S., Muehl, C., Soleymani, M., Lee, J.-S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I., 2012. “DEAP: A Database for Emotion Analysis using Physiological Signals”, IEEE Transactions on Affective Computing, 3 (1), pp. 18-31.
    https://doi.org/10.1109/T-AFFC.2011.15
  24. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., 2011. “Scikit-learn: Machine Learning in Python”, JMLR, 12, pp. 2825-2830.
  25. Kalinina, V.N., Solovev, V.I., Kolemaev, V.A., Shevelev, V.V., Mihalev, B.G., 2003. Vvedenie v mnogomernyiy statisticheskiy analiz, 66 p. (In Russian).
  26. Renaud Gaujoux et al., 2010. A flexible R package for nonnegative matrix factorization. In: BMC Bioinformatics, p. 367.

Received 12.11.2018