Control Systems and Computers, N4, 2016, Article 1
DOI: https://doi.org/10.15407/usim.2016.04.003
Upr. sist. maš., 2016, Issue 4 (264), pp. 3-15.
UDC 621.513.8
Stepashko Volodymyr S., Doctor of Eng. Sciences, Head of the department, International Research and Training Center for Information Technologies and Systems NAS and MES of Ukraine, Glushkov ave., 40, Kyiv, 03187, Ukraine,
E-mail: stepashko@irtc.org.ua
Conceptual fundamentals of intelligent modeling
Introduction. An analytical overview has been made on existing approaches to developing intelligent methods and tools for modeling complex processes and systems, including the support for the tasks of administrative decisions in various socio-economic sectors. It is concluded that the vast majority of the existing publications justify the implementation of the “intelligent modeling” simply by using the neural networks, evolutionary methods and other means of computational intelligence.
Methods. In contrast, in this study a new concept of intelligent modeling as the complex processes and systems is developed, according to which it is proposed to distinguish the three main aspects: the intelligent offline modeling with the characteristics of a complex system from statistical data; the intelligent online modeling as a part of a control or decision-making process in the real time; a systemic intelligent modeling.
Three of these types or levels of the modeling process can be specified as: Intelligent modeling offline is a static task of the intellectual support of the process for building models out of the system control (from fixed base or data sample). It is shown that a proper system should be based on the inductive modeling tools, have a database and knowledge base as well as including tools of the intelligent interface.
A methodology of their development is formulated based on a formalized structuring of knowledge about the subject area of the mathematical modeling from statistical data. The intelligence is focused here exactly in the interface.
Intelligent modeling online is a dynamic task of construction, adjustment and restructuring models in the system operation process (from changeable database). The appropriate system should include all the elements of the previous system and the tools supporting the knowledge-driven process of automatic or automated building models that plausibly describe the behavior of the objects in the conditions of uncertainty and incomplete prior information about the properties of the simulated objects and environment in which they operate, with accuracy being sufficient to making effective decisions by DMP under conditions of permanent changing the situation.
Systemic intelligent modeling should provide an intellectual support of processes of DSS modeling in a complex system to automatically detect optimal operating modes of a real system as well as the possible adverse or dangerous modes. The corresponding integrated system should contain the following key elements: information subsystem, which function is observing and the data storage; monitoring subsystem which is actually an online modeling; subsystem DSS which has formed the appropriate options for possible solutions and evaluated its effectiveness according to the certain criteria. This complex is practically a situational modeling system and has all the characteristics of intelligence. It includes two previous levels of the intelligent modeling. Such system has the necessarily accumulation function of knowledge about the object being modelled and the environment, as well as options for reasonable decisions in the changing situations.
Download full text! (In Russian).
Keywords: Intelligent modeling, socio-economic sectors, support of decisions, modeling complex processes and systems.
- Burov, Ye.V., 2008. “Systema modelyuvannya intelektualʹnoyi merezhi biznes-protsesiv. Informatsiyni systemy ta merezhi”. Visn. NU Lvivska politekhnika, 610, pp. 34–39. (In Ukrainian).
- Lytvyn, V.V., 2011. “Modelyuvannya intelektualʹnykh system pidtrymky pryynyattya rishenʹ z vykorystannyam ontolohichnoho pidkhodu”. Radioelektronika, informatyka, upravlinnya, 2 (25), pp. 93–101. (In Ukrainian).
- Zachko, O.B., 2013. “Intelektualʹne modelyuvannya parametriv produktu infrastrukturnoho proektu (na prykladi aeroportu “Lʹviv”)”. Vostochno-Evropeyskyy zhurnal peredovykh tekhnolohyy, 10 (61), T. 1, pp. 92–94. (In Ukrainian).
- Korolov, O.L., Krulikovskyy, A.P., 2013. “Intelektualni metody modelyuvannya protsesiv upravlinnya proektamy”. Uchenye zapysky Tavrych. nats. un-ta ym. V.Y. Vernadskoho, Seryya “Ekonomyka y upravlenye”, 26 (65), T. 1, pp. 73–86. (In Ukrainian).
- Timashova, L., Vitkovski, T., 2015. “Tekhnologiya intellektual’nogo proizvodstvennogo modelirovaniya virtual’nykh predpriyatiy”. Vestn. Nats. tekhn. un-ta “Khar’kovskiy politekhnicheskiy institut”. Seriya Informatika i modelirovaniye, 32, pp. 136–147. (In Russian).
- Valkman, Yu.R., Stepashko, P.V., 2015. “Na puti postroyeniya ontologii intellektual’nogo modelirovaniya”. Índuktivne modelyuvannya skladnikh sistem. 7. K.: MNNTS ÍTtaS NANU, pp. 101–115. (In Russian).
- Merkur’yev, YU.A., Teylans, A.A., Merkur’yeva, G.V., 1991. “Intellektual’noye modelirovaniye proizvodstvennykh protsessov”. Programmnyye produkty i sistemy, 3, pp. 43–49. (In Russian).
- Gladkiy, S.L., Stepanov, N.A., Yasnitskiy, L.N., 2006. Intellektual’noye modelirovaniye fizicheskikh problem. M.: Izd-vo Instituta komp’yuternykh issledovaniy, 200 p. (In Russian).
- Mikoni, S.V., Kiselov, I.S., 2007. “Intellektual’noye imitatsionnoye modelirovaniye predpochteniy ekspertov na matritsakh parnykh sravneniy”. Sb. dokl. Vseros. nauch.-prakt. konf. “Imitatsionnoye modelirovaniye. Teoriya i praktika” IMMOD-2007. T. 1. SPb: FGUP TSNIITS, pp. 182–186. (In Russian).
- Novikova, Ye., Demidov, N., 2012. “Sredstva intellektual’nogo analiza i modelirovaniya slozhnykh protsessov kak klyuchevoy instrument situatsionnogo upravleniya”. Connect. Mir informatsionnykh tekhnologiy, 3, pp. 84–89. (In Russian).
- Gorbatkov, S.A., Rashitova, O.B., Solntsev, A.M., 2013. “Intellektual’noye modelirovaniye v zadache prinyatiya resheniy v ramkakh nalogovogo upravleniya”. Vestn. Ufimsk. gos. aviatsion. tekhn. universiteta, 1 (54), T. 17, pp. 182–187. (In Russian).
- Polupanov, D.V., Khayrullina, N.A., 2014. “Intellektual’noye modelirovaniye segmentatsii torgovykh tsentrov na osnove samoorganizuyushchikhsya kart Kokhonena” Naukovedeniye, 1, pp. 1–15. (In Russian).
- Glushkov, S.V., Levchenko, N.G., 2014. “Intellektual’noye modelirovaniye kak instrument povysheniya effektivnosti upravleniya transportno-logisticheskim protsessom”. Tr. Mezhdunar. nauch.-tekhn. konf. Yevraziyskogo nauchnogo ob”yedineniya, pp. 1–5. (In Russian).
- Amarger, R., Biegler, J.L.T., Grossmann, I.E., 1990. An Intelligent Modelling Interface for Design Optimization. Pittsburgh: Carnegie Mellon Univ., 43 p.
- W. Bille, B. Pellens, F. Kleinermann et al., 2004. “Intelligent Modelling of Virtual Worlds Using Domain Ontologies”. Proc. of the Workshop of Intelligent Comp. (WIC), held in conjunction with the MICAI 2004 conf., Mexico, pp. 272–279, ISBN 968-489-024-9.
- Balic, J., Cus, F., 2007. “Intelligent modelling in manufacturing”. J. of Achievements in Materials and Manufacturing Engin, 24 (1), pp. 340–349.
- Al-Shareef, A.J., Abbod, M.F., 2010. “Intelligent Modelling Techniques of Power Load Forecasting for the Western Area of Saudi Arabia”. J. of King Abdulaziz Univ.: Eng. Sci., 21 (1), P. 3–18.
https://doi.org/10.4197/Eng.21-1.1 - Ž.M. Čojbašič, V.D. Nikolič, I.T. Čirič et al., 2011. “Computationally Intelligent Modelling and Control of Fluidized Bed Combustion Process”. Thermal Science, 15 (2), pp. 321–338.
https://doi.org/10.2298/TSCI101205031C - Advances in Intelligent Modelling and Simulation: Artificial Intelligence-Based Models and Techniques in Scalable Computing, 2912. Eds J. Kołodziej, S.U. Khan, T. Burczyński. Berlin–Heidelberg: Springer-Verlag, 381 p.
- Sharma, A., Yadava, V., Judal, K.B., 2013. “Intelligent Modelling and Multi-Objective Optimisation of Laser Beam Cutting of Nickel Based Superalloy Sheet”. Int. J. of Manufacturing, Materials, and Mechanical Engineering (IJMMME), 3 (2), pp. 1–16.
- Simjanovska, M., Gusev, M., Madevska-Bogdanova, A., 2014. “Intelligent modelling for predicting students’ final grades”. Proc. of 37th Int. Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, IEEE Publ., pp. 1216–1221. ISBN: 978-953-233-081-6.
- https://ru.wikipedia.org/wiki/Modeling
- Tomashevskyy, V.M., 2005. Modelyuvannya system. K.: Vyd. hrupa BHV, 351 s. (In Ukrainian).
- Zgurovskyy, M.Z., Pankratova, N.D., 2007. Osnovy systemnoho analizu. K.: Vyd. hrupa BHV, 546 p. (In Ukrainian).
- L’yung, L., 1991. Identifikatsiya sistem. Teoriya dlya pol’zovatelya. M.: Nauka, 432 p. (In Russian).
- Kash’yap, R.L., Rao, A.R., 1991. Postroyeniye dinamicheskikh stokhasticheskikh modeley po eksperimental’nym dannym. M.: Nauka, 383 p. (In Russian).
- Manhart, K., 1996. “Artificial Intelligence Modelling: Data Driven and Theory Driven Approaches”. Social Science Microsimulation. Berlin–Heidelberg: Springer-Verlag, pp. 416–431.
https://doi.org/10.1007/978-3-662-03261-9_19 - Samoylenko, A.A., 2014. “Konstruirovaniye sistemy informatsionnoy podderzhki upravlencheskikh resheniy”. Upravlausie sistemy i masiny, 5, pp. 61–68. (In Russian).
- V.V. Lytvynov, S.V. Holub, K.M. Hryhorʺyev et. al., 2011. Obʺyektno-oriyentovane modelyuvannya pry proektuvanni vbudovanykh system i system realʹnoho chasu. Navch. posibnyk. Cherkasy: Cherkasʹkyy nats. un-t im. B. Khmelʹnytsʹkoho, 379 p. ISBN 978-966-2545-15-9. (In Ukrainian).
- Karpov, V., Puhachova, M., Stepashko, V., 2000. “Statystychnyy monitorynh sotsialʹno-ekonomichnykh protsesiv yak aktualʹne zavdannya derzhavnoyi statystyky”. Statystyka Ukrayiny, 2000, 2, pp. 33–40. (In Ukrainian).
- Samoylenko, O.A., Stepashko, V.S., 2008. “Systema informatsiynoyi pidtrymky pryynyattya operatyvnykh upravlinsʹkykh rishenʹ”. Modelyuvannya ta keruvannya stanom ekoloho-ekonomichnykh system rehionu. Zb. nauk. pratsʹ. K.: MNNTS ITtaS NAN ta MON Ukrayiny, 4, pp. 211–219. (In Ukrainian).
- Ivakhnenko, A.G, 1968. “Group Method of Data Handling as a Rival of Stochastic Approximation Method”, Journal Soviet Automatic Control, 3, pp. 58-72. (In Russian).
- Ivakhnenko, A.G., 1982. Inductive method of self-organization of complex systems.Kiev: Naukova dumka, 296 p. (In Russian).
- Stepashko, V.S., 2010. “Elementy teoriyi induktyvnoho modelyuvannya”. Stan ta perspektyvy rozvytku informatyky v Ukrayini. Kol. avtoriv. K.: Nauk. dumka, pp. 481–496. (In Ukrainian).
- https://en.wikipedia.org/wiki/Deep_learning
- Stepashko, V.S., 1991. “O zadache strukturizatsii znaniy eksperta v oblasti modelirovaniya po empiricheskim dannym”. Kibernetika i vych. tekhnika, 92, pp. 80–83. (In Russian).
- Odrin, V.M., 1989. Metod morfologicheskogo analiza tekhnicheskikh sistem. M.: VNIIPI, 311 p. (In Russian).
- Sheredeko, Yu.L., 2006. “Morfologicheskiy instrumentariy tvorchestva v sistemakh podderzhki prinyatiya resheniy”. (In Russian). Systemy pidtrymky pryynyattya rishenʹ. Teoriya i praktyka. Zb. dop. nauk.-prakt. konf. K.: IPMMS NANU, pp. 173–176.
- Stepashko, V.S., Zvorygina, T.F., 2003. “Ob odnom podkhode k probleme vyvoda resheniy v slozhnoy zadache”. Upravlausie sistemy i masiny, 6, pp. 82–87. (In Russian).
- Stepashko V.V., Zvorygina T.F., 2003. “Intelligent System Design for Knowledge Structure Models from Observed Data”. Proc. of 17th Europ. Simul. Multiconf. ESM’2003, Nottingham, England, 9–11 June, pp. 603–612.