Control Systems and Computers, N3, 2016, Article 1

DOI: https://doi.org/10.15407/usim.2016.03.004

Upr. sist. maš., 2016, Issue 3 (263), pp. 4-15.

UDC 004.048

Kryvyi S.L.

Doctor of Physical and Mathematical Science, Professor, Professor of the Informational Systems Department of the Taras Shevchenko National University of Kyiv, E-mail: sl.krivoi@gmail.com

Formal ontological models in scientific researchers

Introduction and purpose. In the paper consider some problems connected to building ontologies, thesauruses and achieving  of consensus in understanding of interpretation of concepts from ontology for a given domain.  

Methods. In first part discusses of similarities and differences between ontologies and thesauruses. As a result of such discussion is the ontology and thesaurus mast complements to each other.

In second part of paper consider problems of knowledge consistency derived from natural language text or another sources of information. For knowledge presentation are used corresponding predicates or relations. The consistency problem of knowledge defines as constraint satisfaction problem over given domain D by using interpretation of concepts in this domain D. Consistence problem may be not solved over domain D, because some information is absences or set of predicates are inconsistency. This situations are discussed.

In third part of paper considered set of functions and operations over ontologies. For representation of hierarchy of ontology’s concepts  is used directed graph (more precisely hyper graph). These functions and operations are divided on set of functions and operations on graph and functions and operations of administrative character.  In four part of paper such functions and operations are demonstrated by examples.

Conclusion. Paper is described same implementations of ontologies by using languages OWL, OWL2, RDF and so on.
In conclusion the future of applications of ontologies are described. In special case the main attention give a role of ontologies in transdisciplinery sciences researches.

Download full text! (In Russian).

Keywords: ontologies, thesauruses, natural language, transdisciplinery sciences researches.

1.Lukashevich N.V., 2011. Tezaurusy v zadachakh informatsionnogo poiska. M.: Izd-vo. MGU. 512 p.

  1. Nikitina, S.Ye., 1987. Semanticheskiy analiz yazyka nauki. M.: Nauka, 141 p.
  2. Kulik, B.A., 2001. Logika yestestvennykh rassuzhdeniy. S.-Pb.: Nevskiy dialekt. 127 p.
  3. Palagin, A.V., Kryvyy, S.L., Petrenko, N.G., 2009. Znaniye-oriyentirovannyye informatsionnyye sistemy s obrabotkoy yestestvenno-yazykovykh ob”yektov: osnovy metodologii i arkhitekturno-strukturnaya organizatsiya. Upravlausie sistemy i masiny, 3, pp. 42–55.
  4. Apresyan, YU.D., 1992. Lingvisticheskiy protsessor dlya slozhnykh informatsionnykh sistem. M: Nauka, 324 p.
  5. Cohen, D., Jeavons, P., 2006. The Complexity of Constraint Languages. Handbook of Constraint Programming. Eds. by F. Rossi, P. van Beek, T. Walsh, pp. 245–280.
    https://doi.org/10.1016/S1574-6526(06)80012-X
  6. Palagin, A.V., Kryvyy, S.L., Petrenko, N.G., 2015. “Razrabotka, issledovaniye i predstavleniye funktsiy i operatsiy na ontologiyakh”. Information theories and appl. Boolgaria. ITHEA, 22 (2), pp. 103–114.
  7. Serhiyenko, I.V., Kryvyy, S.L., Provotar, O.I., 2011. Alhebrayichni aspekty informatsiynykh tekhnolohiy. K: Nauk. dumka, 399 p.
  8. Kriviy S.L., 2014. Diskretna matematika. Chernívtsí: Bukrek, 567 p.
  9. Klini, S.K., 1973. Matematicheskaya logika. M.: Mir, 480 p.
  10. Mendel’son, E., 1984. Vvedeniye v matematicheskuyu logiku. M.: Nauka, 319 p.
  11. Internet The Species of OWL. http://www.w3.org./TR/owlguide/#OwlVarieties
  12. F. Baader, D. Calvanese, D. McGuinness et al., 2007. The Description Logic Handbook. Theory, implementation and applications. Cambridge Univ. Press, 601 p.
    https://doi.org/10.1017/CBO9780511711787
  13. B-Toolkit User’s Manual – Release 3.4. 1997. Copyright B-Core (UK). Ltd.

Received 18.02.2016