Control Systems and Computers, N6, 2016, Article 2

DOI: https://doi.org/10.15407/usim.2016.06.012

Upr. sist. maš., 2016, Issue 6 (266), pp. 12-23.

UDC 510.63

B.Ye. Rytsar, Doctor Sc., Professor, Department of Radioelectronic Devices Systems, Institute of Telecommunications, Radioelectronics and Electronic Engineering, L’viv polytechnic National University, Ad.: Bandera srt., 12, L’viv, Ukraine, e-mail: bohdanrytsar@gmail.com

A Simple Numeric Set-Theoretical Method of the Logic Differential Calculus

A new method of the logic differential calculus, based on the numeric set-theoretical approach for the definition of the different logic derivatives types of the arbitrary order for Boolean function is proposed. The given algorithm has relatively less computational complexity due to the lower amount of the operations required for solving the given problem. This is proved in the given examples borrowed from the well-known publications, in order to compare them with the proposed numeric set-theoretic method to obtain the different types of logic derivatives of arbitrary order.

Download full text! (English)

Keywords: minimization of the variables number, logic function, Boolean function, method of logical differential calculus.

1. Thayse, A., 1980. Boolean Differential Calculus. Germany, Heidelberg: Springer-Verlag, 367 p.
2. Steinbach, B., Posthoff, C., 2010. Boolean Differential Calculus. Sasao T., Butler J.T. Progress in Appl. of Boolean Functions, pp. 55–78.
3. Astola, J.T., Stankovic, R.S., 2006. Fundamentals of Switching Theory and Logic Design. Springer, pp. 235–250.
4. Zakrevsky, A.D., Pottosin, Yu.V., Cheremisinova, L. D., 2007. Logical Foundations of Designing Discrete Devices. M .: Fizmatlit, 592 p. (In Russian).
5. S. Yanushkevich, D. Bochmann, R. Stankovic et. al., 2000. Logic Differential Calculus: Achievements, Trends and Applications. J. Avtomatika and Telemechanika, 6, pp. 155–170.
6. Levashenko, V., Shmerko, V., Yanushkevich, S., 1996. Solution of Boolean Differential Equations on Systolic Arrays. Cybernetics and System Analysis, 32 (1), pp. 26–40.
https://doi.org/10.1007/BF02366579
7. D. Bochmann, Ch. Posthoff, V. Shmerko et al., 2000. Logic Differential Calculus as Part of Switching Theory. IEE 4-th Int.
Conf. on New Inform. Technol. in Educ. NITE’2000, Minsk, Belarus, pp. 126–135.
8. Yanushkevich, S.N., 2001. Matrix and Combinatorics Solution of Boolean Differential Equations. Discrete Applied Mathematics, Preprint submitted to Elsevier Preprint. 
9. Sellers, F.F., Hsiao, M.Y., Bearson, L.W., 1968. Analizing errors with the Boolean difference. IEEE Trans. Comp., 1, pp. 676–683.
https://doi.org/10.1109/TC.1968.227417
10. Marinos, P., 1981. Derivation of minimal complete sets of test-input sequences using Boolean differences. IEEE Trans. Computers, C-20, N 1, pp. 25–32.
https://doi.org/10.1109/T-C.1971.223077
11. Steinbach, B., Zhang, Z., Lang, Ch., 1997. Logical design of fully testable large circuits by decomposition. Proc. Int. Conf. On Computers-Aided Design of Discrete Devices. Minsk. Belarus, pp. 7–14.
12. Jaakko, T.A., Stankovic, R.S., 2006. Fundamentals of Switching Theory and Logic Design. A Hands on Approach. Springer, 342 p.
13. Yanushkevich, S., 1997. Matrix method to solve logic differential equations. Computers and Digital Technique (UK), 144, 5, pp. 267–272.
14. Marincovic, S., Tosic, Z., 1974. Algorithm for minimal polarized form determination. IEEE Trans. Computers, C-23, N 12, pp. 1313–1315.
https://doi.org/10.1109/T-C.1974.223854
15. Davio, M., Deschamps, J., 1972. Symmetric discrete functions. Philips Res. Repts., 27 (5), pp. 405–445.
16. Suprun, VP, 1985. Polynomial decomposition of symmetric Boolean functions. Izv. Academy of Sciences of the USSR. Tech. cybernetics, 5, pp. 123–127. (In Russian).
17. Yanushkevich, S.N., 1998. Logic differential calculus in multivalued logic design. Tech. University of Szczecin Akad. Publ., Poland, pp. 32–39.
18. Zaitseva, E.N., 1993. Applications of Logic Differential Calculus in CAD of Integrated Circuits, PhD Thesis, Univ. of Informatics and Radioelectronics, Minsk, Belarus, pp. 45–59.
19. Gorbatov, V.A., 1986. Fundamentals of discrete mathematics. M .: Vyssh. shk., 311 p. (In Russian).
20. Rytsar, B.YE., 2013. A simple visual method for determining the logical derivatives of arbitrary orders. Selection and processing information, 38(114), pp. 125–132. (In Ukrainian).
21. Steinbach, B., Posthoff, C., 2009. Logic Functions and Equations. Examples and Exercises. Springer Science + Business Media B.V., 230 p.
22. Rytsar, B., Romanowski, P., Shvay, A., 2010. Set-theoretical Constructions of Boolean Functions and theirs Appl. in Logic Synthesis. Fundamenta Informaticae, 99 (3), pp. 339–354.
23.Rytsar, B.E., 2013. Numerical theorem-plural interpretation of the zygcalian polynomial. Upravlajusi sistemi i masiny, 1, pp. 11-26. (In Ukrainian).
24.Rytsar, B.E., 2013. Numerical theorem-plural interpretation of Reed-Muller polynomials with fixed and mixed polarity. Upravlausie sistemy i masiny, 3, pp. 30–50. (In Ukrainian).
25. Butler, J.T., Sasao, T., 2010. Boolean Functions for Cryptography. Sasao T., Butler J.T.: Progress in Appl. of Boolean Functions, pp. 33–53.
26. Schneeweiss, W.G., 1989. Boolean Functions with Engineering Applications and Computer Programs. Berlin Heidelberg: Springer-Verlag, 264 p.
https://doi.org/10.1007/978-3-642-45638-1

Received 12.09.2016