Control Systems and Computers, N2, 2024, Article 3

https://doi.org/10.15407/csc.2024.02.021

Control Systems and Computers, 2024, Issue 2 (306), pp. 21-34

UDC 004.7

I.M. Oksanych, PhD (Eng.), Senior Research Associate, The Institute of Mathematical Machines and Systems Problems of the Ukraine National Academy of Science (IMMSP NAS of Ukraine), ORCID: https://orcid.org/0000-0002-1208-3427, Glushkov ave., 42, Kyiv, 03187, Ukraine, inokc2018@gmail.com

V.F. Grechaninov, PhD (Eng.), Head of Department, The Institute of Mathematical Machines and Systems Problems of the Ukraine National Academy of Science (IMMSP NAS of Ukraine), ORCID: https://orcid.org/0000-0001-6268-3204, Glushkov ave., 42, Kyiv, 03187, Ukraine, vgrechaninov@gmail.com

A.V. Lopushanskyi, Research Associate, The Institute of Mathematical Machines and Systems Problems of the Ukraine National Academy of Science (IMMSP NAS of Ukraine), ORCID: https://orcid.org/0000-0002-4840-0236,
Glushkov ave., 42, Kyiv, 03187, Ukraine, anatoliy.lopushanskyi@gmail.com

S.E. Novgorodskij, Senior Research Associate, The Institute of Mathematical Machines and Systems Problems of the Ukraine National Academy of Science (IMMSP NAS of Ukraine), ORCID: https://orcid.org/0000-0002-6498-1819. Glushkov ave., 42, Kyiv, 03187, Ukraine, stanislavnovgorodskij@gmail.com

V.F. Holovskyi, Senior Research Associate, The Institute of Mathematical Machines and Systems Problems of the Ukraine National Academy of Science (IMMSP NAS of Ukraine), ORCID: https://orcid.org/0009-0001-4959-0940,
Glushkov ave., 42, Kyiv, 03187, Ukraine, rusgol05@gmail.com

INTEGRATION OF DIFFERENT APPROACHES TO THE MODELING OF CRITICAL INFRASTRUCTURE 

The article is devoted to solving the problem of determining the resilience of critical infrastructure systems to malicious actions of adversaries. Different modeling methods and their integration are considered. Using the example of a system of systems, including energy and transport networks, the application of methods of agent, network, economic modeling and the method of system dynamics are considered, which are combined into a single structure of analysis for the development of algorithms for general decision-making support for the protection of critical infrastructure systems.

Download full text! (On English)

Keywords: modeling the resilience of critical infrastructure, agent-based modeling, network modeling, system dynamics methods.

  1. The Law of Ukraine “On critical infrastructure” at 16.11.2021 no 1882-IX. Update date: 15.06.2022. [online]. Available at: <https://zakon.rada.gov.ua/laws/show/1882-20#Text> [Accessed 01 Feb. 2024].
  2. Quyang, M. (2014). “Review on modeling and simulation of interdependent critical infrastructure systems”, Reliability Engineering & System Safety, 121, pp. 43-60. DOI:
    https://doi.org/10.1016/j.ress.2013.06.040
  3. Ani, U.P.D., Watson, J.D.Mck., Nurse J.R.C., Cook A., Maple, C. (2019). “A review of critical infrastructure protection approaches: improving security through responsiveness to the dynamic modelling landscape”. Conference: Living in the Internet of Things (IoT 2019). London, UK, 2019, pp.1-15. DOI: https://doi.org/10.1049/cp.2019.0131
  4. Oliva, G., Panzieri, S., Setola, R. (2012). “Modeling and simulation of critical infrastructures”. WIT Transactions on State of the Art in Science and Engineering, Vol 54, WIT Press. DOI: https://doi.org/10.2495/978-1-84564-562-5/03
  5. Huang, J., Cui, Y., Zhang, L., Tong, W., Shi, Y., Liu, Z. (2022). “An Overview of Agent-Based Models for Transport Simulation and Analysis”. Journal of Advanced Transportation, Vol. 2022. https://doi.org/10.1155/2022/1252534
  6. Thompson, J.R., Frezza, D., Necioglu, B., Cohen, M., Hoffman, K., Rosfjord, K. (2019). “Interdependent Critical Infrastructure Model (ICIM): An agent-based model of power and water infrastructure”. International Journal of Critical Infrastructure Protection, 24, pp. 144-165. https://doi.org/10.1016/j.ress.2013.06.040
  7. Sako, D.J.S, Igiri, C.G., Bennet, E.O., Deedam, F.B. (2024). “ESARS: A Situation-Aware Multi-Agent System for Real-Time Emergency Response Management”. European Journal of Information Technologies and Computer Science, 4 (1), pp. 1-8. DOI: https://doi.org/10.24018/compute.2024.4.1.83
    https://doi.org/10.24018/compute.2024.4.1.83
  8. Mukhopadhyay, A., Vazirizade, S.M. “Multi Agent Systems for Emergency Response”. [online]. Available at: <https://ayanmukhopadhyay.github.io/files/talks/MultiAgentEmergency.pdf> [Accessed 01 Feb. 2024].
  9. Ferrario, E. (2014). “System-of-systems modeling and simulation for the risk analysis of industrial installations and critical infrastructures”. Engineering Sciences [physics]. Ecole Centrale Paris, English. NNT : 2014ECAP0046ff. https://theses.hal.science/tel-01127194/
  10. Fang, Y., Zio, E. (2019). “Game-Theoretic Decision Making for the Resilience of Interdependent Infrastructures Exposed to Disruptions”. In: Gritzalis, D., Theocharidou, M., Stergiopoulos, G. (eds) Critical Infrastructure Security and Resilience. Advanced Sciences and Technologies for Security Applications. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-00024-0_6
  11. Schotten, R., Bachmann, D. (2023). “Critical infrastructure network modelling for flood risk analyses: Approach and proof of concept in Accra, Ghana”. Journal of Flood Risk Management. DOI: https://doi.org/10.1111/jfr3.12913
  12. Zio, E., Sansavini, G. (2011). “Modeling Interdependent Network Systems for Identifying Cascade-Safe Operating Margins”. IEEE Transactions on Reliability, 60 (1), pp. 94-101. DOI: https://doi.org/10.1109/TR.2010.2104211
  13. Newman, D.E., Nkei, B., Carreras, B. A., Dobson, I., Lynch, V.E., & Gradney, P. (2005). “Risk assessment in complex interacting infrastructure systems”. Proceedings of the 38th Annual Hawaii International Conference on System Sciences, Big Island, HI, USA, 2005, pp. 63c-63c. DOI: https://doi.org/10.1109/HICSS.2005.524
  14. Hellmann, F., Schultz, P., Grabow, C., Heitzig, J., & Kurths, J. (2015). “Survivability: A unifiying concept for the transient resilience of deterministic dynamical systems”. arXiv.
    https://doi.org/10.1038/srep29654
  15. Armenia, S., Cardazzone, A., Carlini, C , Assogna, P., D’Alessandro, C. N. , Limone, E., Brein, E. (2014). “A system dynamics approach to critical infrastructures interdependency analysis: the experience of the Crisadmin project. In Proceedings of the 32nd International Conference of the System Dynamics Society.
  16. Rodrigue, J-P., Ducruet, C. The Geography of Transport System. 2.1 – The Geography of Transportation Networks. [online]. Available at: <https://www.fh777.org/index-31.html> [Accessed 01 Feb. 2024].
    https://doi.org/10.4324/9781003343196-1
  17. NATO’s Chemical, Biological, Radiological and Nuclear (CBRN) Defence Policy. [online]. Available at: <https://www.nato.int/cps/en/natohq/official_texts_197768.htm> [Accessed 05 July 2023].

Received 01.05.2024