Control Systems and Computers, N2, 2023, Article 6

https://doi.org/10.15407/csc.2023.02.061

Control Systems and Computers, 2023, Issue 2 (302), pp. 61-66

UDC 004.414.23

P.B. TIUTIUNNIK, Student, Computer Systems Software, Department of the Applied Mathematics Faculty, National Technical University of Ukraine “Igor Sikorsky Kyiv Politechnic Institute”, Peremohy Ave 37, Kyiv, 03056, Ukraine, artyoda05@gmail.com

N.A. RYBACHOK, PhD, Asoc. Professor, Computer Systems Software Department of the Applied Mathematics Faculty, National Technical University of Ukraine “Igor Sikorsky Kyiv Politechnic Institute”, Peremohy Ave 37, Kyiv, 03056, Ukraine, ResearcherID: I-5414-2017, ORCID: https://orcid.org/0000-0002-8133-1148, rybachok@pzks.fpm.kpi.ua

ANALYSIS OF TASKS PARAMETERS O SOLVE THE PROBLEM
OF
DETERMINING DELAYS AND RISKS IN AGILE PROJECTS

Agile methodology is actively used for project management. This article presents the results of determining which task parameters are important in determining delays and risks in Agile projects. The article provides information on the influence of parameters on the likelihood that a task is a risk or a delay. These parameters are typical for the Atlassian Jira bug tracker.

 Download full text! (On English)

Keywords: Agile project; Task; Risk, Delay, Machine Learning methods.

  1. State of Agile report, [online]. Available at: <https://stateofAgile.com/> [Accessed 03 Apr. 2023].
  2. 9 Reasons for Agile Failures, [online]. Available at: <https://zegal.com/blog/post/Agile-methodology-failures/> [Accessed 03 Apr. 2023].
  3. Har-Peled, S., Roth, D., Zimak, D. “Constraint Classification for Multiclass Classification and Ranking.” Advances in Neural Information Processing Systems 15. Proceedings of the 2002 Conference, 2003. ISBN 0-262-02550-7.
  4. Pika, A, van der Aalst W. M., Fidge C.J., ter Hofstede A.H., Wynn M.T. “Profiling event logs to configure risk indicators for process delays,” Advanced Information Systems Engineering (CAISE 2013), 2013, pp. 465-481.
    https://doi.org/10.1007/978-3-642-38709-8_30
  5. Zimmermann T., Nagappan N., Guo P.J., Murphy B., “Characterizing and predicting which bugs get reopened,” in 34th International Conference on Software Engineering (ICSE), 2012. IEEE Press, Jun. 2012, pp. 1074-1083.
    https://doi.org/10.1109/ICSE.2012.6227112
  6. Garcia, H.V, Shihab E., “Characterizing and predicting blocking bugs in open source projects,” in Proceedings of the 11th Working Conference on Mining Software Repositories – MSR 2014. ACM Press, May 2014, pp. 72-81.
  7. Bettenburg, N., Just, S., Schroter, A., Weiss, C., Premraj R., Zimmermann, T. “What makes a good bug report?” in Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering – SIGSOFT ’08/FSE-16. New York, New York, USA: ACM Press, Nov. 2008, p. 308, [online]. Available at: <http://dl.acm.org/citation.cfm?id=1453101.1453146> [Accessed 03 Apr. 2023].
    https://doi.org/10.1145/1453101.1453146
  8. Panjer, L.D., “Predicting Eclipse Bug Lifetimes,” in Fourth International Workshop on Mining Software Repositories (MSR’07: ICSE Workshops 2007). IEEE, May 2007, pp. 29-29.
    https://doi.org/10.1109/MSR.2007.25
  9. Hooimeijer, P., Weimer, W. “Modeling bug report quality,” in Proceedings of the twenty-second IEEE/ACM international conference on Automated software engineering – ASE ’07. ACM Press, 2007, p. 34, [online]. Available at: <http://dl.acm.org/citation.cfm?id=1321631. 1321639>. [Accessed 03 Apr. 2023].
    https://doi.org/10.1145/1321631.1321639
  10. Guo, P.J., Zimmermann, T., Nagappan, N., Murphy, B. “Characterizing and predicting which bugs get fixed: an empirical study of Microsoft Windows,” 2010 ACM/IEEE 32nd International Conference on Software Engineering, vol. 1, 2010, pp. 495-504.
    https://doi.org/10.1145/1806799.1806871
  11. Han, W.-M, Huang W.-M., “An empirical analysis of risk components and performance on software projects,” Journal of Systems and Software, vol. 80, no.1, 2007, pp. 42-50.
    https://doi.org/10.1016/j.jss.2006.04.030
  12. Porter, A.A., Siy H.P., Votta L. G., “Understanding the effects of developer activities on inspection interval,” in Proceedings of the 19th international conference on Software engineering – ICSE ’97. ACM Press, 1997, pp. 128-138.
    https://doi.org/10.1145/253228.253253
  13. L. Wallace and M. Keil, “Software project risks and their effect on outcomes,” Communications of the ACM, vol. 47, no. 4, 2004, pp. 68-73.
    https://doi.org/10.1145/975817.975819
  14. Kim, S, Zimmermann, T, Pan, K, and Whitehead E. Jr., “Automatic Identification of Bug-Introducing Changes,” in 21st IEEE/ACM International Conference on Automated Software Engineering (ASE’06). IEEE, Sep. 2006, pp. 81-90, [online]. Available at: <http://dl.acm.org/ citation.cfm?id=1169218.1169308>. [Accessed 03 Apr. 2023].
    https://doi.org/10.1109/ASE.2006.23

 Received 03.02.2023