Control Systems and Computers, N1, 2023, Article 1

https://doi.org/10.15407/csc.2023.01.005

Control Systems and Computers, 2023, Issue 1 (301), pp. 5-17

UDC 519.7

B.Ye. RYTSAR, Doctor of Technical Sciences, Professor, L’viv Polytechnic National University, 12 Bandera Str., L’viv, 79013, Ukraine, ORCID: https://orcid.org/0000-0002-2929-2954, bohdanrytsar@gmail.com

A SIMPLE STUCK-AT-FAULTS DETECTION METHOD IN DIGITAL COMBINATIONAL CIRCUITS

This paper considers the new method of detection (diagnostic) stuck-at-faults (0/1) in digital combinational circuits based on a numerical set-theoretical approach. Compared to known methods and algorithms, the proposed approach differs in simpler implementation of searching for vectors of test codes at arbitrary points of the studied logic circuit. A few simple set-theoretical operations and procedures are sufficient to determine the location and the type of a stuck-at-fault (0/1). This is evidenced by the presented examples of application of the proposed method, that are borrowed from the publications of well-known authors.

 Download full text! (On English)

Keywords: digital combinational circuits, stuck-at-faults detection, vectors of test codes, numerical set-theoretical approach, operations and procedures.

  1. Parag, K. Lala., 2009. An Introduction to Logic Circuit Testing. Morgan & Claypool. 111 p.
  2. Kohavi, Z., Jha, N., 2010. “Switching and Finite Automata Theory”. Cambridge University Press, pp. 206-250.
    https://doi.org/10.1017/CBO9780511816239
  3. Fujiwara, H., 1986. Logic testing and design for testability. In Comp. Syst. Series. Cambridge, MA: Mass. Inst. Tech., 304 p. DOI: https://doi.org/10.7551/mitpress/4317.001.0001.
    https://doi.org/10.7551/mitpress/4317.001.0001
  4. Sasao, T., 1997. Easily testable realizations for generalized Reed-Muller expressions. IEEE Trans. On Computers, 46 (6), pp. 709-716.
    https://doi.org/10.1109/12.600830
  5. Sasao, T., 1999. Switching Theory for Logic Synthesys. Kluwer Academic Publishers, pp. 303-310.
    https://doi.org/10.1007/978-1-4615-5139-3
  6. Faraj, K., 2011. “Design Error Detection and Correction System based on Reed-Muller Matrix for Memory Protection”. International Journal of Computer Applications (0975-8887), 34 (8), pp. 42-48.
  7. Reed, I.S., 1973. “Boolean Difference Calculus and Fault Finding”. SIAM Journal on Applied Mathematics, 24 (1), pp. 134-141.
    https://doi.org/10.1137/0124014
  8. Samangadkar, S.S., Dudam, S.S., & Sinha, A.K., 2015. “Fault Diagnosis in Combinational Logic Circuits: A Survey”. IJSRD, 3 (2), pp. 2051-2054.
  9. Zakrevskiy, A.D., Pottosin, Yu.V., Cheremisinova, L.D., 2007. Logicheskiye osnovy proyektirovaniya diskretnykh ustroystv. M.: Fizmatlit. 592 p. (In Russian).
  10. Karkouri, Y, Aboulhamid, M. Multiple Stuck-at Fault in Logic Circuits. [online]. Available at: <http://www.iro.umontreal.ca/~aboulham/pdfs_sources/KCCVLSI.pdf> [Accessed 1 June 2022].
  11. Y Liu, Q Xu. On modeling faults in FinFET logic circuits. 2012 IEEE Inter. Test Conf. Paper 11.3. shILAotDjLlJRNNc.pdf.
    https://doi.org/10.1109/TEST.2012.6401565
  12. Liu, Y., Xu, Q., 2012. “On modeling faults in FinFET logic circuits”. In 2012 IEEE International Test Conference, pp. 1-9.
    https://doi.org/10.1109/TEST.2012.6401565
  13. Sidik Nurcahyo, S. “General Algorithm for Testing the Combinational Logic Gates inside Digital Integrated Circuits”. International Journal of Engineering Research and Applications, 7 (7), pp. 1-5. DOI: 10.9790/9622-0707050105.
    https://doi.org/10.9790/9622-0707050105
  14. Jameil, A. K., 2015. “A new single stuck fault detection algorithm for digital circuits”. Int. J. Eng. Res. Gen. Sci, 3(1), 1050-1056.
  15. Malihi, L., Malihi, R., 2020. “Single stuck-at-faults detection using test generation vector and deep stacked-sparse-autoencoder”. SN Applied Sciences, 2, 1715, pp. 1-10. DOI: https://doi.org/10.1007/s42452-020-03460-0.
    https://doi.org/10.1007/s42452-020-03460-0
  16. Zhang, Z., Zhao, J., 2017. “A deep belief network based fault diagnosis model for complex chemical processes”. Comput Chem Eng., 107, pp. 395-407.
    https://doi.org/10.1016/j.compchemeng.2017.02.041
  17. Rytsar, B.Ye. Teoretyko-mnozhynni optymizatsiyni metody lohikovoho syntezu kombinatsiynykh merezh: dys. doktora tekhn. Lviv, 2004. 348 p. (In Ukrainian).
  18. Rytsar, B.Ye., 2015. “A New minimization method of logical functions in polynomial set-theoretical format. 1. Generalized rules of conjuncterms simplification”. Upravlyayushchie Sistemy i Mashiny, 2, pp. 39-57.

Received 15.12.2022