Control Systems and Computers, N4, 2022, Article 7

https://doi.org/10.15407/csc.2022.04.064

Control Systems and Computers, 2022, Issue 4 (300), pp. 64-72

UDK 004.75+004.932.2:616

O.S. KOVALENKO, DSc (Medicine), Professor, Head of the Medical Information Systems Department, https://orcid.org/0000-0001-6635-0124, e-mail: askov49@gmail.com,

L.M. KOZAK, DSc (Biology), Senior Researcher, Leading Researcher of the Medical Information Systems Department,  https://orcid.org/0000-0002-7412-3041, e-mail: lmkozak52@gmail.com,

O.O. ROMANYUK, Junior Researcher of the Medical Information Systems Department, https://orcid.org/0000-0002-6865-1403, e-mail: ksnksn7@gmail.com,

O.A. KRYVOVA, Researcher of the Medical Information Systems Department, https://orcid.org/0000-0002-4407-5990,  e-mail: ol.kryvova@gmail.com, 

International Research and Training Center for Information Technologies and Systems of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, 40, Acad. Glushkov av., Kyiv, 03187, Ukraine

Informational and software module “ClinAss” for registration and analysis of clinical data about the patient’s condition

To formalize the studied business processes, the definition of 1) participants in the process of accumulation and exchange of medical data in the infrastructure of digital medicine and 2) two types of sources of medical information about the patient are taken into account. Taking into account the characteristics of individual links of business processes and the sequence of processes of providing medical care, an information model for the implementation of business processes of registration and analysis of clinical data on the patient’s condition in the infrastructure of digital medicine was formed.

Download full text! (In English)

Keywords: Formalized business processes, medical data repositories, classification models, Data Mining methods, software module, clinical data analysis.

  1. Precision health and medicine: a digital revolution in healthcare, 2020. Editors: Arash Shaban-Nejad, Martin Michalowski. Cham, Switzerland : Springer. 197 p.
  2. Bhavnani, S.P, Narula, J, Sengupta, P.P., 2016. “Mobile technology and the digitization of healthcare”. Eur Heart J., 37 (18), pp. 1428-1438. DOI: 10.1093/eurheartj/ehv770.
    https://doi.org/10.1093/eurheartj/ehv770
  3. Kim, J.A., 2013. Creative Destruction of Medicine: How the Digital Revolution will Create Better Health Care. New York, NY: Basic Books. p. 336.
    https://doi.org/10.4258/hir.2013.19.3.229
  4. Silva, B.M.C., Rodrigues, J.J.P.C., de la Torre Díez, I., López-Coronado, M., Saleem, K., 2015. Mobile-health: a review of current state in 2015. J. Biomed Inform., 56, pp. 265-272. DOI: 10.1016/j.jbi.2015.06.003.
    https://doi.org/10.1016/j.jbi.2015.06.003
  5. Agrawal, R, Prabakaran, S., 2020. “Big data in digital healthcare: lessons learnt and recommendations for general practice”. Heredity, 124 (4), pp. 525-534.
    https://doi.org/10.1038/s41437-020-0303-2
  6. World Health Organization. mHealth: Use of mobile wireless technologies for public health (Report EB139/8), 2016. Available online at: <https://apps.who.int/gb/ebwha/pdf_files/EB139/B139_8-en.pdf> (accessed February 15, 2021).
  7. O’Donoghue, J, Herbert, J., 2012. Data management within mHealth environments: patient sensors, mobile devices, and databases. Journal of Data and Information Quality (JDIQ), 4(1), pp. 1-20.
    https://doi.org/10.1145/2378016.2378021
  8. Li, X., Dunn, J. Salins, D., Zhou, G., Zhou, W., Schüssler-Fiorenza Rose, S.M., et al., 2017. “Digital health: Tracking physiomes and activity using wearable biosensors reveals useful health-related information”. PLoS Biology, 15 (1), DOI: 10.1371/journal.pbio.2001402.
    https://doi.org/10.1371/journal.pbio.2001402
  9. Celermajer, D.S., Chow, C.K., Marijon, E., Anstey, N.M., Woo, K.S., 2012. “Cardiovascular disease in the developing world: Prevalences, patterns, and the potential of early disease detection”. J. Am Coll Cardiol., 60, pp. 1207-1216.
    https://doi.org/10.1016/j.jacc.2012.03.074
  10. Wagner, M.M., Tsui, F.C., Espino, J.U., Dato, V.M., Sitting, D.F., Caruana, R.A., et al., 2001. “The emerging science of very early detection of disease outbreaks”. J. Public Heal Manag Pract., 7, pp. 51-59.
    https://doi.org/10.1097/00124784-200107060-00006
  11. Nestor, P.J., Scheltens, P., Hodges, J.R., 2004. “Advances in the early detection of Alzheimer’s disease”. Nat. Rev. Neurosci., 10, pp. 34-41.
    https://doi.org/10.1038/nrn1433
  12. Chén, O., Lipsmeier, F., Phan, H., Prince, J., Taylor, K., Gossens, C., et al., 2020. “Building a machine-learning framework to remotely assess Parkinson’s disease using smartphones”. IEEE Trans. Biomed. Eng., 67 (12), pp. 3491-3500. DOI: 10.1109/TBME.2020.2988942
    https://doi.org/10.1109/TBME.2020.2988942
  13. Georga, E.I., Tachos, N.S., Sakellarios, A.I., Kigka, V.I., Exarchos, T.P., Pelosi, G., 2019. “Artificial intelligence and data mining methods for cardiovascular risk prediction”. Cardiovascular Computing-Methodologies and Clinical Applications, Springer, Singapore, pp. 279-301.
    https://doi.org/10.1007/978-981-10-5092-3_14
  14. Amin, M., Chiam, Y., 2019. “Identification of significant features and data mining techniques in predicting heart disease”. Telematics and Informatics, vol. 36, pp. 82-93.
    https://doi.org/10.1016/j.tele.2018.11.007
  15. Kaieski, N., da Costa, C.A., da Rosa Righi, R., Lora, P.S., 2020. Application of artificial intelligence methods in vital signs analysis of hospitalized patients: A systematic literature review. Applied Soft Computing, Vol. 96. DOI: https://doi.org/10.1016/j.asoc.2020.106612.
    https://doi.org/10.1016/j.asoc.2020.106612
  16. SAS Data Mining. [online] Available at: <https://www.sas.com/ru_ua/industry/health-care.html> [Accessed 2 May 2021].
  17. Data Miner is the most powerful web scraping tool for professional data miners. [online] Available at: <http:// https://dataminer.io/> [Accessed 2 Sept. 2022].
  18. WEKA. [online] Available at: <https://www.cs.waikato.ac.nz/ml/weka/> [Accessed 2 Sept. 2022].
  19. RapidMiner. [online] Available at: <https://rapidminer.com/> [Accessed 2 Sept. 2022].
  20. Yoo, I., Alafaireet, P., Marinov, M., Pena-Hernandez, K., Gopidi, R., Chang, J.F., 2021. “Data Mining in Healthcare and Biomedicine”. Journal of medical systems, 36(4), pp. 2431-2448.
    https://doi.org/10.1007/s10916-011-9710-5
  21. Kovalenko, O.S., Kozak, L.M., Najifian Tumanjani, M., Romanyuk, O.O., 2022. “Experience and Prospects of Creating Medical Information Systems and Information Technologies to Support Medical Care”. Cybernetics and Computer Engineering, 1(207), pp 59-73 (in Ukranian).
    https://doi.org/10.15407/kvt207.01.059
  22. Romaniuk, O.O., Kozak, L.M., Kovalenko, O.S., 2021. “Formation of Interoperable Digital Medicine Information Environment: Personal Medical Data”. Sci. innov., 17 (5), pp. 50-62.
  23. Kryvova, O.A., Kozak, L.M., 2021. “Information Technology for Classification of Donosological and Pathological States Using the Ensemble of Data Mining Methods”. Cybernetics and Computer Engineering, 1(203), pp 77-96.
    https://doi.org/10.15407/kvt203.01.077
  24. Marushko, T.V. Juvenile idiopathic arthritis. https://health-ua.com/article/38162-yuvenlnij-dopatichnij-artrit (in Ukranian).

Received 26.10.2022