Control Systems and Computers, N1, 2021, Article 4

https://doi.org/10.15407/csc.2021.01.035

Control Systems and Computers, 2021, Issue 1 (291), pp. 35-47.

UDC  681.513; 364.2:331

Ye.ASAVCHENKO-SYNYAKOVA, PhD (Eng.), Senior Research Associate, International Research and Training Centre of Information Technologies and Systems of the NAS and MES of Ukraine, Glushkov ave., 40, Kyiv, 03187, Ukraine, savchenko_e@meta.ua

O.VTUTOVA, PhD (Econ.), Senior Research Associate, International Research and Training Centre of Information Technologies and Systems of the NAS and MES of Ukraine, Glushkov ave., 40, Kyiv, 03187, Ukraine, olenatutova@gmail.com

THE TOOLS FOR INTELLIGENT DATA ANALYSIS, MODELING, AND FORECASTING OF SOCIAL AND ECONOMIC PROCESSES

The tools of intellectual modeling in MS Excel are developed on the basis of a technique of the analysis, modeling and forecasting of difficult processes on a DB of social and economic processes which contains the information on the indicators characterizing development of digital economy of Ukraine. This will automate and improve the decision-making process in the field of socio-economic development of Ukraine both at the regional level and in comparison with other countries.

Download full text! (In English)

Keywords: tools, data analysis, modeling, forecasting, level of human development, GMDH.

  1. Ivakhnenko, A.G., 1970. “Heuristic Self-organization in Problems of Engineering Cybernetics”. Pergamon PRESS. Journal Automatica. 6. pp. 207-219.
    https://doi.org/10.1016/0005-1098(70)90092-0
  2. Madala, H.R., Ivakhnenko, A.G., 1994. Inductive Learning Algorithms for Complex Systems Modeling. Boca Raton: CRC Press Inc. 384 p.
  3. Ivakhnenko, A.G, 1968. “Group Method of Data Handling as a Rival of Stochastic Approximation Method”, Journal Soviet Automatic Control, 3, pp. 58-72. (In Russian).
  4. Intelligent Modelling and Analysis. URL: https://www.nottingham.ac.uk/computerscience/research/ima.aspx
  5. Advances in Intelligent Modelling and Simulation: Artificial Intelligence-Based Models and Techniques in Scalable Computing. Eds J. Kołodziej, S.U. Khan, T. Burczyński. Berlin-Heidelberg: Springer-Verlag, 2012. 381 p.
  6. Opportunities in Intelligent Modeling Assistance. URL: https://modeling-languages.com/opportunities-intelligent-modeling-assistance/.
  7. Intelligent modeling of historical and as-built plant data for an efficient decision making. URL: https://www.avineon.com/en/intelligent-data-modeling.
  8. Kuznetsov, S.D., 2007. Basics of databases: a tutorial. 2nd ed. M .: Internet University of Information Technologies. Binomial. Knowledge laboratory.
  9. The ICT Development Index (IDI): conceptual framework and methodology. URL: https://www.itu.int/en/ITU-D/Statistics/Pages/publications/mis/methodology.aspx.
  10. Networked Readiness Index. URL: https://networkreadinessindex.org.
  11. E-Government Development Index (EGDI). URL: https://publicadministration.un.org/egovkb/en-us/About/Overview/-E-Government-Development-Index
  12. E-Participation Index. URL: https://publicadministration.un.org/egovkb/en-us/About/Overview/E-Participation-Index.
  13. E-Government readiness. URL: https://www.oecd-ilibrary.org/docserver/9789264061651-33-en.pdf?expires=1621616606&id=id&accname=guest&checksum=A9A1AD23179D762594
    F1B0D1DC5211AB.
  14. Global Cybersecurity Index. URL: https://www.itu.int/en/ITU-D/Cybersecurity/Pages/global-cybersecurity-index.aspx.
  15. EBRD Knowledge Economy Index. URL: https://www.ebrd.com/news/publications/brochures/ebrd-knowledge-economy-index.html
  16. ABOUT THE GLOBAL INNOVATION INDEX. URL: https://www.globalinnovationindex.org/about-gii#keyfindings.
  17. The Digital Economy and Society Index (DESI). URL: https://digital-strategy.ec.europa.eu/en/policies/desi.
  18. Savchenko, Ye.A., Tutova, Ye.V., 2016. “A Procedure for the Human Potential Development Level Data Analysis, Modeling and Forecasting for Countries of the World and Ukrainian Regions”. Upravlâûŝie sistemy i mašiny, Issue 4 (264), pp. 86-92. DOI: 
    https://doi.org/10.15407/usim.2016.04.086
  19. Savchenko, Ye.A., 2015. “Data Sample Preprocessing in the Tasks of Inductive Modelling”. Upravlâûŝie sistemy i mašiny, 2, pp. 82-87. (In Russian).
  20. Savchenko, E.A., Stepashko, V.S., 2008. “Analysis of the selective properties of the GMDH criteria in their sequential application”. Modelyuvannya ta keruvannya stanom ekoloho-ekonomichnykh system rehionu. Zb. prats. K.: MNNTS IT ta S, pp. 199-210. (In Ukrainian).
  21. Savchenko, E.A., Ivakhnenko, A.G. “Investigation of efficiency of the additional determination method of the model selection in the modeling problems by application of GMDH algorithm”. Journal of Automation and Information Sciences, 2008, 40(3), pp. 47-58.
    https://doi.org/10.1615/JAutomatInfScien.v40.i3.50
  22. Koppa, Yu.V., Stepashko, V.S., 2002. “Measuring the efficiency of regression analysis and GMDH for predicting environmental processes”. Pratsi Mizhnar. konf. zinduktivnogo modelyuvannya v 4-kh tomakh (MKIM-2002). T.3. L’vív: Derzhavniy NDI inf. infrastruktura, pp. 123-127. (In Ukrainian).
  23. Tutova, O.V., Savchenko, Ye.A., 2019. “Ukraine in the Information and Communication Technology Development Ranking”. Control systems and computers, 3, pp. 70-78.
    https://doi.org/10.15407/csc.2019.03.070
  24. Tutova, O., Savchenko, Ye., 2018. “Assessment of Influence of Digital Economy Development on Social and 6. Economic Environment”, Upravlâûŝie sistemy i mašiny, 6 (278), pp. 81-92. (In Ukrainian). https://doi.org/10.15407/usim.2018.06.081

Received 23.01.2021