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NEurOSymBOlIC APPrOACH IN BIOlOGICAl rESEArCH

Modelling and studying the processes and methods of intercellular and intracellular signalling cascades regulation involved in the
process of programmed cell death and searching for substances capable of influencing the activation or inhibition of the process of
cell apoptosis and the methods of their transportation to a given cell, is one of the numerous actual and open issues in biological
research. A safe and fast method for this that does not require research on living organisms is computer molecular modelling. Many
approaches and tools have been proposed and developed in the last decade. In particular, today, we observe a wide use of analyti-
cal methods for drug creation and a search for effective treatment methods. Such methods include modern methods of artificial
intelligence (AI) based on neural network technology and methods of modelling interactions in biological and chemical processes
at different levels of abstraction. Neural networks are used to obtain the ligand representation, protein compounds, and others
and to build predictive models of the molecular compound properties widely used in drug discovery research. Modelling methods
for both continuous and discrete models are applied using various approaches: statistical, probabilistic, simulation, and visual.
The most well-known and used molecular modelling methods include the docking method, the molecular dynamics method, and
the Monte Carlo method. To date, many software tools that support these methods have been developed. However, the considered
modelling approaches and tools have a number of disadvantages, which can be of critical importance for conducting experiments.

This article presents a new approach to modelling biochemical processes and biological systems based on the formalism of the
behaviour algebra and algebraic modelling language APLAN and its combination with neural network methods, the so-called
Neurosymbolic approach. In particular, the possibility of multilevel modelling (from the level of the atomic structure of substances
and quantum–mechanical interactions to the level of interaction of biological objects) and modelling of biological systems as com-
plex hybrid systems that combine discrete and continuous processes is considered. A brief review of the current research on using
neural network methods in biological research was also presented.

Keywords: Molecular Modelling, Algebraic Modelling, Neural Network Methods, Artificial Intelligence, Modelling of Biological
Experiments, Cell Apoptosis Modelling.

Applications

Introduction

The main challenges of current research in biology 
are the engineering development of drugs, the in-
tensive im-plementation of cell and gene therapy, 
and the development of neuroengineering [1, 2] . In 
addition, the presence and importance of solving 
the problem of single-cell analysis [2–4] is noted, 

as it will allow us to obtain a clearer understanding 
of the dynamics of the development of tissues and 
organisms and also of structures in cell populations .

Mathematical methods play a significant role 
in studying and analysing biological processes and 
systems . There are the presentation and statistical 
processing of data from various experiments, the 
implementation of relevant calculations, the ana-
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lysis and construction of mathematical models of 
complex biological systems, and so on . Mathemat-
ical models are successfully used to study oxygen 
transport, protein interactions, tumour angiogen-
esis, and various cancer treatment methods [5–7] .

There are a lot of approaches, methods (Monte 
Carlo, M .D . of molecular dynamics, M .D . of mo-
lecular mechanics, Docking, etc . [8–10]) and tools 
(AutoDock, ChemModLab, FlexAID, OCHEM, 
Open3DGrid, QSAR-tools, HORTON, DataWar-
rior, Bio-PEPA and many others [11–14]) to mod-
elling biological processes and systems . However, 
despite the possibilities of these tools and methods, 
the discoveries in the fields of biology, chemistry, 
physics, and medicine, the complexity of biologi-
cal systems, the need to process a large amount of 
data, and, unfortunately, the presence of some dis-
advantages (low accuracy, limitations of the frame-
work of biological experiments, the need for a re-
sponsible selection of research methods and tools, 
the presence of errors in the structures of molecules 
with which software tools work, and so on), leave 
the issue of finding new approaches and tools as 
open . In particular, the open issues are to solve 
technical and computational problems of existing 
systems and to create such approaches to the math-
ematical representation of models of biological 
and biochemical processes, which would provide 
the possibility of the most complete reproduction 
of experiments in vivo in a computer environment . 
That is, the main task is to develop a system that 
will be able to study, explain, predict and indicate 
possible ways of controlling processes that occur in 
biological systems .

Neural networks are one of the powerful tools 
widely used in biological research today [15–23] . 
Artificial Intelligence (AI) systems built based on 
neural networks allow us to solve many urgent is-
sues, such as:

• Molecule generation: the ability to generate 
new molecules that meet given criteria .

• Optimization of synthesis: finding the best 
synthesis path for a certain molecule, considering 
the availability of substances, efficiency of reac-
tions, purity of products and environmental safety .

• Prediction of activity and affinity: prediction 
of desirable or undesirable biological activity or af-

finity of a molecule to a certain target based on its 
structure or functional groups .

• Study of the interaction of molecules: under-
standing the processes of interaction of molecules 
with other molecules, proteins, nucleic acids, and 
so on .

It is important to have the possibility of imple-
menting existing molecular modelling methods 
(molecular docking, molecular mechanics, hy-
brid quantum-mechanical/molecular-mechanical 
simulations) and deep learning models for predict-
ing the structure, energy, kinetics, and thermody-
namics of molecular interaction and also meth-
ods for processing large data (Big Data) into such 
systems . The Big Data in biological research are 
molecular data (information about the structure 
of molecules, proteins, genes, etc .), clinical infor-
mation, research and experimental data (for exam-
ple, structural files containing information on the 
formation of connections between substances and 
characteristics of experiments), organism models, 
microscopic/X-ray images, etc . In particular, in 
the field of pharmacology and medicine, these are 
data from clinical trials, rare diseases, indications, 
side effects, protein interactions, and so on .

On the other hand, considering a number of 
previously described shortcomings of the current 
methods, we cannot claim that the results obtained 
by the neural network/artificial intelligence system 
are not erroneous, although they will indeed be 
such as to narrow the search . Accordingly, there is 
a need for additional experiments and verification 
and confirmation of the obtained results . In some 
cases, these may be relevant laboratory experi-
ments, but, for example, taking into account such 
processes as the manufacture of drugs, we are talk-
ing about the high cost and labour-intensiveness of 
their implementation . We can see the solution to 
this problem by applying the algebraic approach 
and the corresponding formal methods [24] . Thus, 
the main idea of our research is to use the technol-
ogy of algebraic modelling and quantum-chemical 
apparatus for modelling and verification of experi-
ments in the field of medicine and pharmacology, 
in particular, modelling and verification of dif-
ferent approaches to the issue of investigating the 
properties of intercellular and intracellular interac-
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tions in different environments . We understand the 
environment as a set of cellular and extracellular 
structures and influencing factors . In particular, 
the possibility of using the algebraic modelling sys-
tem to study the nature of the interaction of cells 
with other agents under different conditions of the 
environment (change in temperature, concentra-
tion and structure of substances, acidity, etc .) is 
considered . The role of the neural network is to 
analyze the current state of the environment and 
determine the most effective action that will lead to 
the desired property (for example, activation and 
achievement of the cell's programmed death under 
the influence of drugs or irradiation, and so on) .

Unlike traditional methods of modelling or sim-
ulation, which work with one specific scenario of 
behaviour, the application of algebraic modelling 
makes it possible to consider multiple scenarios of 
the behaviour of cellular compartments and struc-
tures . Moreover, algebraic modelling is multi-level, 
which allows the modelling of the cell structure and 
cellular processes at a higher level of abstraction 
based on intermolecular, quantum interactions, 
and, in particular, at the level of electron-electron 
interactions .

The article presents an overview of the results 
and prospects of using neural networks and ar-
tificial intelligence systems built on their basis in 
biological research, considers the general scheme 
of the approach proposed by the authors, and gives 
an example of a possible combination of neu-
ral network methods and algebraic modelling for 
modelling biochemical processes in cells (using 
the example of the process of programmable dead  
cells – apoptosis) .

Neural Networks in Biological  
research

The use of neural networks and artificial intelli-
gence systems built on their basis is gaining more 
and more popularity and bringing significant re-
sults in such fields as medicine, pharmacology, 
genetics, biochemistry, etc . Considerable results 
have been achieved in the diagnosis of diseases 
of the organs of vision and recommendations for 
their treatment, for the diagnosis of diseases of the 

cardiovascular system, oncological diseases, and 
many dangerous infections . Available algorithms 
and tools allow for quick and relatively accurate 
analysis of medical images (CT and MRI) and, as 
a result, to identify patterns and anomalies that are 
invisible to the human eye . One example of such 
an application of neural networks is the Deep Ge-
stalt network, capable of detecting a significant 
number of rare hereditary diseases by analyzing 
the facial features of the patient in the photo [25] . 
In addition, today, we are discussing the possibil-
ity of using neural networks to predict the structure 
of proteins, discover molecules, and so on . So, in 
2020, it became known about the use of artificial 
intelligence for drug development by the Japanese 
pharmaceutical company Sumitomo Dainippon 
Pharma and the British startup Exscientia . As a 
result of research, a drug molecule was created, 
which entered the first phase of clinical trials [26] . 
Insilico Medicine, Evotec, and Schrdinger have 
also started testing several other molecules invent-
ed by Exscientia . Today, in addition to Exscientia, 
such companies as Schrdinger, Insitro, AbCellera, 
Relay Therapeutics, Atomwise, Recursion Phar-
maceuticals, Cellarity, and so on are working on 
the application of neural networks and artificial in-
telligence systems for drug discovery .

The principles of operation of neural networks 
and features of their application in a wide range of 
biological research are considered in articles [15–
23] . Thus, in the article [15], the use of deep neural 
networks (DNN), namely the "Chemi-Net" pro-
gram, is considered for predicting the properties of 
molecular compounds (the processes of absorption, 
distribution, metabolism and elimination of drugs 
(ADME)) . The base of Chemi-Net is a molecular 
graph convolutional network and a multitask neu-
ral network (MT-DNN) method used to improve 
prediction accuracy . The input data are molecules 
with given 3D coordinates of each atom, previous-
ly determined by processing SMILES molecular 
structure files . The output is the ADME properties 
predicted for the input molecule . Experiments on 
multitasking prediction were performed on datas-
ets of solubility and rate of inhibition of the PXR 
(master protein regulator cytochrome P450-3A, or 
CYP3A) molecule .
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The article [16] proposes the use of the geomet-
ric deep learning (GDL) method to predict the re-
sistance of the human immunodeficiency virus to 
drugs and the interaction of HIV with drugs . The 
input data is a set of drug data in the SMILES for-
mat . Output data – prediction of resistance of the 
HIV virus to the drug under consideration . The 
prediction result is determined by the QED index 
(quantitative evaluation of drug similarity), which 
is an index that shows the interaction of the drug 
with the virus, using available information in the 
range (0–1) .

The article [17] discusses the application of arti-
ficial neural networks to the study of potential drug 
interactions (DDI) . Data from the DrugBank data-
base were used as input data (contains bioinformat-
ics and chemoinformatics resources that combine 
details of drugs – there are files with information 
on the molecular structure of drugs (formats – 
MOL, SMILES, PDB, SDF, etc .), information 
about reactions – a table "substrate/enzyme/prod-
uct, where you can view information about their 
molecular structure and characteristics) . Output 
data is the prediction of drug interactions .

The article's authors [18] describe the imple-
mentation approach and analyze the performance 
of multitasking deep networks and corresponding 
deep models using the DeepChem open-source 
platform as an example and the possibility of its 
application for drug discovery . Inputs are datasets 
from the Kaggle (enzymatic inhibitors), Factors 
(PRSS12 (serine 12) inhibition compounds), Ki-
nase (protein kinases), and UV (over 10,000 com-
pounds) collections .

The article [19] describes the software tool 
MAGIK, which provides a graph neural network 
(GNN) framework for estimating the dynamic 
properties of moving objects based on time-lapse 
experiments . MAGIK models object movement and 
physical interaction using a graphical representa-
tion . Input data - microscopic images – a sequence 
of images illustrating the evolution of a group of 
cells over time corresponding to the frame numbers . 
Output data – linking coordinates in the trajectory; 
definition of local and global dynamic properties .

In the article [20], the authors build a model 
for predicting the simultaneous inhibition of the 

primary human cytochrome CYP450 isoforms by 
training a multitask deep autoencoder neural net-
work (DNN) . Input data is a dataset of compounds 
obtained from the PubChem BioAssay database . 
Each data set contained a compound activity score, 
potency, curve description, fitted log EC50, held 
R-squared and activity . Output data is a substance-
inhibitor/probability that the selected substance is 
an inhibitor .

The article [21] discusses deep learning meth-
ods for predicting the affinity between a drug and a 
target protein . Input data are the representation of 
drugs and protein sequences in SMILES format/
based on the DAVIS dataset (data for drug-target 
binding affinity prediction experiments) and the 
KIBA dataset (drug target prediction dataset) . 
Gene names and RefSeq accession numbers were 
derived from protein sequences found in the Da-
vis databases retrieved from the UniProt database . 
Output data is the prediction of the binding affinity 
of drugs and their targets .

In [22], the authors describe the development of 
DrugCell . It is an interpreted model of deep learn-
ing of human cancer cells, trained on the reactions 
of 1235 tumour cell lines to 684 drugs . DrugCell 
uses a modular neural network that combines con-
ventional artificial neural networks (ANN) with a 
visible neural network (VNN) to predict drug re-
sponse . Binary encodings of individual genotypes 
are processed through VNNs with an architec-
ture driven by a hierarchy of cellular subsystems, 
with multiple neurons assigned to each subsys-
tem . Complex chemical structures are processed 
through ANNs using the Morgan fingerprint meth-
od as input characteristics . Input data are the drug 
molecules and samples of malignant tumours . Out-
put data are survival curves for drug combinations 
predicted by DrugCell to be effective/ineffective .

The article [23] describes the Deep Docking 
(DD) platform, which uses artificial intelligence 
methods to improve the docking method, such 
as predicting the docking score based on two-di-
mensional molecular fingerprints, with automatic 
sorting of the “necessary” molecules . Input data –
compound data from ZINC chemical library and 
"make-on-demand" collection from Enamine in 
SMILES format, 3D receptor structure in PDB 
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format . The output is a set of the most suitable 
molecules for docking evaluation, which existing 
docking tools can use .

This is only a brief overview of existing scientific 
works devoted to the issue of using neural network 
methods in biological research . There are many 
other, no less important works . However, despite the 
significant breakthrough in the field of drug discov-
ery and treatment methods due to the use of neural 
network methods, scientists talk about a number of 
open questions and challenges, including:

Ability to predict interactions of more than two 
drugs or targets simultaneously . Determining which 
drug combinations are most successful for addi-
tional in vitro or in vivo testing in many types of  
preclinical models, such as higher-order combina-
tions among new therapeutic compounds and doses .

• Identification of effective ways to reduce the 
need to generate large amounts of single-cell data 
to predict response to combination therapy and the 
impact of toxicity, as well as recommended dosing 
that optimizes both efficacy and safety .

• Needs to use patient data and clinical profiles 
to validate in silico predictions of therapy response .

From a technical point of view, the most com-
mon problems for the implementation and effec-
tive operation of neural networks and artificial in-
telligence systems are data limitations of biological 
experiments, severe discrepancies between the dis-
tributions of training and real test data, difficulties 
of analysis and interpretation, the impact on the ef-
fectiveness of training of the growth of the amount 
of data, etc .

Neural Networks and Algebraic mod-
elling in Studying Biochemical Pro-
cesses and Systems

General scheme of the proposed approach
The diagram that describes the application of 

the algebraic modelling system and neural net-
work methods to the modelling of experiments in 
the field of biology, as well as the main components 
and tools necessary for conducting the research, is 
presented in Fig .

 The first stage is the preparation of modelling 
data, namely, the presentation of knowledge in 

the form of algebraic specifications . Accordingly, 
the input data are the formal representation of the 
modelled environment and the formalized proper-
ties that must be achieved in the modelling process . 
This can be, for example, a list of cell structures and 
a description of their interaction processes, and as 
a property, for example, the possibility of achieving 
programmed cell death . At this stage, to obtain the 
correct algebraic representation of the model, the 
interaction of algebraists with experts (biologists, 
chemists, physicists) is important .

The formalization of knowledge is multilevel . 
That is, it can be carried out at any level of abstrac-
tion – at the level of the atomic structure of sub-
stances and quantum-mechanical interaction; at 
the level of the molecular structure of substances 
taking into account their intermolecular interac-
tions; at the level of interactions between substanc-
es and at the level of biological objects . Multilevel 
modelling is provided by the presence of a unique 
knowledge base, which contains a set of formalized 
knowledge and theories from quantum physics, 
chemistry, biology, and so on . The appropriate level 
of abstraction is chosen according to the purpose of 
the experiment and taking into account the impact 
on the result of the lowest level of abstraction .

For modelling, we use the Insertion Model Cre-
ator system [27–29], which formalizes the subject 
area and creates an experiment's model that will 
be solved in terms of formal theories . The model 
is then transferred to the Algebraic Server, which 
combines formalized mathematical theories and 
corresponding methods that work with models and 
solve problems . The main theory is the theory of 
agents and environments, initiated by the Ukraini-
an academician O .A . Letychevskyi and the British 
scientist D . Gilbert [28] . Accordingly, we consider 
biological systems, or some structural elements of 
biological systems, as agents interacting with each 
other in some environment .

The environment may also be an agent that in-
teracts with similar agents in a higher-level envi-
ronment and so on . Each agent has its own type, 
which is determined by the attributes of the agent . 
Each attribute is typed and belongs to a certain the-
ory in which predicates and operations are defined . 
We can define arithmetic, symbolic, bit, and byte 
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attributes . Attributes also can be parameterized, 
i .e ., they can define some functional symbol . Due 
to the presence of a large number of different types 
of attributes in different theories, it is important to 
define the problem of executability of the formula 
in the chosen theory, i .e . to solve the problem of 
finding the values of attributes in the formula with 
which the formula is true . This problem is solved by 
so-called solvers, or solver systems and systems for 
automatic proof of theorems, which are the basis of 
the algebraic approach in modelling .

The process of interaction of agents in some en-
vironment is described by a behavioural equation, 
which is an equality in which the name of the be-
haviour is on the right, and the expression in the 
algebra of behaviours over actions and other behav-
iours is on the left . An action is analogous to the 
Hoare triple and contains a precondition that de-
termines the possibility to perform the action and 
then a postcondition that determines the trans-
formation or change of the attributes of the agent . 
The precondition is determined by the predicate, 
which is a Boolean expression over the formulas of 
the corresponding theories, for example, – equal-
ity or inequality in linear arithmetic . Postcondition 
changes the environment and also uses predicates, 
assignment operators, and operations in the chosen 

theory [24, 29, 30] . Algebraic modelling is the ba-
sis of solving behavioural equations . The solution 
of the behavioural equation is a set of scenarios 
or traces that consist of a sequence of actions and 
behaviours and lead to the reachability of a given 
property .

For the modelling of hybrid systems (systems 
that combine a discrete and a continuous compo-
nent), the Insertion Model Creator system is ex-
tended with the possibility of an analytical solution 
of differential equations, the operators of which are 
executable algebraic specifications .

To avoid the possible phenomenon of combi-
natorial explosion due to the high complexity of 
the considered models, we use the neural network 
methods (AI methods) and Big Data processing 
methods, as they can indicate the correct model-
ling path . We create a neural system that analyzes 
the current state of the environment and deter-
mines the most effective action that will lead to 
the desired property . We train the neural network 
on the sequences of such actions that reach the re-
quired property . For example, you can set possible 
options for developing the process of programmed 
cell death (possible sequences of actions) depend-
ing on the initial state of the modelled environ-
ment . The classification model, in turn, indicates 

Fig . Structural diagram of biological 
experiments modelling



Neurosymbolic Approach in Biological Research

iSSN 2706-8145, control systems and computers, 2023, № 4 45

the most effective trace or action to be taken or re-
jects traces that reach an undesirable outcome . In 
addition, neural networks can be used as one of the 
data sources for modelling . For example, we can 
use a neural network or a corresponding artificial 
intelligence system for the first stage of searching 
for substances with given properties and only then 
apply algebraic modelling to prove the properties of 
a given substance .

As a result of the modelling, we obtain a set of 
possible scenarios of the model's behaviour (for-
ward algebraic modelling), or we can determine 
the substances that will correspond to the given 
parameters and the desired behaviour of the model 
(forward and/or backward algebraic modelling), 
determine the necessary initial state of the envi-
ronment under which it is possible to achieve the 
desired scenario behaviour (backward algebraic 
modelling) .

Formalization of Knowledge. An Example of Mod-
elling the Process of Programmed Cell Death

The process of programmed cell death (apopto-
sis) is one of the main cellular processes that unites 
many biological studies . In particular, it is inter-
esting to consider the possibility of activating and 
inhibiting the process of apoptosis as a method of 
combating ageing, cancer cells, human immuno-
deficiency disease, and so on . Accordingly, one of 
the directions of our research is the application of 
algebraic modelling methods to the modelling and 
research of processes and methods of regulation 
of intercellular and intracellular cascades of signal 
transmission, which participate in the process of 
cell apoptosis, taking into account their interac-
tions with cell compartments and their structures . 
One of the experiments is the search for nanopar-
ticles or nanoparticle composites with magnetic 
properties capable of activating the tumour cell 
apoptosis process and/or protecting a healthy cell 
from radiation, and, in particular, the possibil-
ity of modulating pharmacokinetic processes in 
a tumour cell . In the model at this level, we will 
take into account the qualitative and quantitative 
characteristics of such elements of the cell and the 
intercellular environment as proteins (TRADD, 
FADD, RIP, TRAF2, APAF-1, NF-kb, c-Jun, 
clAP (1, 2), some proteins of the Bcl-2 family), 

caspases (2, 3, 8, 9), cytochrome, reactive oxygen 
species, ions (Ca, Na), and so on . These elements 
and nanoparticles are considered as agents whose 
environment of interaction is the cell . In addition, 
we took into account the following parameters of 
the environment: temperature, acidity, the pres-
ence of a magnetic field and its characteristics 
(constant, alternating, pulsed, combined), and 
so on . As the action of the nanoparticle agent, we 
consider all possible interactions with key metal-
containing proteins and enzymes .

Agents and Attributes
To formalize the knowledge of the lowest level 

of abstraction (quantum and interatomic interac-
tions), we define such types of agents as ELEC-
TRON (agents are electrons as individual parti-
cles), PROTON (agents are protons as individual 
particles) and ATOM (agents of the ATOM type 
can be ions, atoms or isotopes) . For models of a 
higher level of abstraction, these agents can be 
present both as attributes of other agents (mol-
ecules, amino acids, proteins, etc .) and as agents 
that interact with higher-level agents in some en-
vironment (for example, a calcium ion in a cell; an 
ion, a proton or an electron as a particle injected 
into a substance during radiation therapy, etc .) . 
As an example of the formalization of the agent 
type, let's consider an agent of the PROTEIN type, 
which presents proteins .

PROTEIN:obj(
polypeptideChainsNum:int,
acidsNum(i):int,
aminoAcids:(int,int)-> AMINOACID,
prostheticGroup:(int)-> MOLECULE,
peptideBond:(int, int, int)->bool,
domains:(int)-> domainType,
mass:real, 
… . ),
The main attributes that characterize this agent 

type are:

• polypeptideChainsNum – an integer type at-
tribute that determines the number of polypeptide 
chains,

• functional attribute AcidsNum(i)  the num-
ber of amino acids of the corresponding polypep-
tide chain,
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• unctional attribute aminoAcids:(i,j) -> AMI-
NOACID for storing the list of amino acids (i – 
chain number, j – amino acid number) that are 
part of the corresponding polypeptide chain,

• functional attribute PeptideBond(k,i,j)-> bool, 
which determines the presence of a bond between 
the i-th and j-th amino acids of the k-th chain,

• functional attribute prostheticGroup:(int)-> 
MOLECULE, which defines (if available) an ad-
ditional group of non-protein nature that is a com-
ponent of a complex protein,

• functional attribute domains(i)->domainType, 
which stores the list of domains of this protein,

• mass – protein mass, and so on.
As you can see, the PROTEIN type agent con-

tains AMINOACID and MOLECULE type agents 
as attributes . From a biological point of view, an 
amino acid is also a molecule – an organic sub-
stance, the physical structure of which includes 
an amino group (- NH2) and a carboxyl group  
(- COOH), and therefore can be formalized as a 
type of MOLECULE agent . On the other hand, 
amino acids have their own set of attributes that 
can be specific to a given type of molecule/sub-
stance, which is why we consider amino acids as 
agents at a higher level of abstraction that uses the 
MOLECULE agent as an attribute .

Attributes of agents of MOLECULE type, in 
turn, are represented by numerical values of the 
following parameters: the set of atoms that com-
prise it (atoms), the electronic configuration of the 
molecule (MolOrbital), bond length (d_bond), 
bond energy (BondEnergy), dipole moment (Di-
poleMoment), molar mass (M_r), bond order 
(bondMO – by the method of molecular orbit-
als, bondV – by the method of valence bonds) and 
bond type (bondType), etc .

The properties of the atoms are determined by 
the structure of their nuclei and the number and 
organization of orbital electrons . Accordingly, the 
main attributes that characterize substances are the 
structures of their molecular orbitals and the nucle-
ar models of atoms that are part of the substance . 
This allows us to consider all the processes of their 
interactions at the level of quantum interactions .

The set of values of all agent attributes deter-
mines its state . It should be noted that the main 

advantage of algebraic modelling is the ability to 
consider not only specific states of agents (all attri-
butes have specific values) but also symbolic states 
(attributes can be specified by formulas – using 
inequalities, Boolean functions) . For example, we 
can say that the temperature of the environment in 
which the agents interact is 22 degrees (tempera-
ture == 22) and the concentration of nanoparticles 
is 400 μg/ml (nanoparticle .concentration == 0,4), 
which is a specific value . In the case where we are 
considering a symbolic simulation, we can specify 
that 18<=temperature <= 22 and 0,2<=nanopar-
ticle .concentration <= 0,8 .

The functional attribute proteins(i)->PROTEIN 
defines all proteins considered in the model .

Interactions of agents are defined using formal 
actions that determine a change in the state of an 
agent or a change in the values of its attributes . 
Such actions include, for example, the formation 
of bonds between atoms, intermolecular interac-
tions, interactions between substances (in particu-
lar, the formation of bonds between amino acids, 
the formation of protein structures, interactions of 
proteins with other proteins and substances), and 
so on . Actions are defined in the language of be-
haviour algebra, which is algebraic specifications . 
Each action has a precondition for its execution 
and changing the values of the attributes of the 
agent/agents . For example, let's consider the Cre-
atePeptideBond action, which determines the for-
mation of a peptide bond between two amino acids:

CreatePeptideBond = Forall(i: AMINOACID, j: 
AMINOACID, n1:int, k1:int, n2:int, k2:int,) 

(i !=j &&( 1<= n1 <= i .molecule .atomsNum) 
&&( 1<= k1 <= i .molecule .atomsNum) &&( 1<= 
n2 <= j .molecule .atomsNum) &&( 1<= k2 <= 
j .molecule .atomsNum) && n1 != k1 && n2 != k2 
&& i .molecule .MolOrbital(n1,k1,-1,1)==2 && 
i .molecule .atoms(n1) .Name == O && i .molecule .
atoms(k1) .Name == H &&

j .molecule .MolOrbital(n2,k2,-1,1)==2 &&
j .molecule .atoms(n2) .Name==N && j .mole-

cule .atoms(k2) .Name == H)
->
" PROTEIN #P1: action 'СreatePeptideBond';"
(Protein1 .aminoAcids(1,1) = i;
Protein2 .aminoAcids(1,2) =j;
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i .molecule .MolOrbital(n1-1,n1,-2,1)=2;
i .molecule .atoms(n1)=j .atoms(n2);
j .molecule .atoms(k2)= i .atoms(n1);
j .molecule .MolOrbital(n2,k2,-2,1)=2
);
In the precondition of the action, it will be 

checked that one of the amino acid residues has a 
free amino group and the other has a free α-car-
boxyl group . If this condition is satisfied, a bond 
will be created between amino acids, and we will 
"write" them into the corresponding polypeptide 
chain . The first will be written the amino acid resi-
due with a free amino group, and the second with 
a free α-carboxyl group . Similarly, other amino 
acids are added to the chain . We also record the 
electronic structure of the dipeptide . In this case, 
since the molecular orbitals of the amino acids are 
the molecular orbitals of the protein, we change 
the structure of the amino acids and create the 
corresponding orbital . All other orbitals remain 
unchanged .

Accordingly, by representing all structural units 
of the cell and external factors in the form of agents 
and attributes of the environment, we obtain a for-
mal representation of the model . By formalizing 
all possible interactions between agents and setting 
different values of attributes of agents and the en-
vironment, we can consider different scenarios of 
agent behaviour .

So, for example, we consider possible options 
for activating the process of apoptosis of a cancer 
cell by a nanoparticle (MOLECULE-type agent), 
such as the activation of death receptors on the cell 
surface (external pathway of the apoptosis process 
activation) or the penetration of nanoparticles into 
the cell and the start of the mitochondrial pathway 
of activation of the cell death process . In particu-
lar, we consider modelling for different initial states 
of the environment, i .e ., we consider different ra-
tios between factors of activation and inhibition of 
the apoptosis process and different values of envi-
ronmental parameters capable of influencing the 
course of the corresponding reactions – tempera-
ture, presence and characteristics of a magnetic 
field, concentration and sizes of nanoparticles, 
concentration reactive forms of oxygen and Ca2 
ions in the cell, and so on .

At the higher level, the formalization of the 
model behaviour for this experiment will be pres-
ent in the following form:

APOPTOSIS_PROCESS = (CONNECTION_
NANOPARTICLE_TO_CELL + PENETRA-
TION_NANOPARTICLE_INTO_CELL),

CONNECTION_NANOPARTICLE_TO_
CELL = (BINDINGtoTNF-R1 + BINDINGto-
FAS-R)),

BINDINGtoTNF = (bindingNanoparticle-
ToTNFR1receptor . bindingTNFR1withTRADD; 
(bindingTRADDwithRIP; (bindingRIPwith-
TRAF2 . NFkBinducingKinaseActivation . NFk-
BinhibitorPhosphorylation . InterleukCytokinSyn- 
thesis . ApoptosisInhibition + (binding RIPwith-
RAIDD; CASPASE_CYCLE_ACTIVATION)) + 
+ (bindingTRADDwithFADD ; (binding FADD 
withсFLIP . ApoptosisInhibition + CASPASE_
CYCLE_ACTIVATION)))),

CASPASE_CYCLE_ACTIVATION = (bind-
ingwithProcaspas; (InitiatorCaspasesActivation; 
(ExecutionerCaspasesActivation + MITOCHON-
DRIA _APOPTOSIS); MORPHOLO_-ICAL_
CELLS_CHANGES) + InitiatorCaspasesInhibi-
tion . ApoptosisInhibition),

… .
In the first part, we consider two possible op-

tions for the interaction of a nanoparticle with a 
cell – CONNECTION_NANOPARTICLE_TO_
CELL behaviour (a set of actions and behaviours 
describing the external path of apoptosis process 
activation) and PENETRATION_NANOPARTI-
CLE_INTO_CELL behaviour (a set of actions and 
behaviours describing the internal path of apopto-
sis process activation) . Next, we consider all sets 
of actions that describe the possible interactions of 
agents and changes in the state of the environment 
depending on the "chosen" path . For example, we 
consider the external pathway of activation of the 
apoptosis process, namely activation of the TNF-
R1 receptor – BINDINGtoTNF behaviour .

The BINDINGtoTNF behavior consists of 
such actions as: bindingNanoparticleToTNF-
R1receptor – binding of a nanoparticle to the 
cell death receptor TNF-R1; bindingTNF-
R1withTRADD – interaction of the TRADD 
adapter protein with the TNF-R1 death domain; 
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bindingTRADDwithRIP – the connection of 
the adapter protein TRADD with RIP proteins 
(here we also consider the possible sequence of 
actions bindingRIPwithTRAF2, NFkBinducing-
KinaseActivation, NFkBinhibitorPhosphoryla-
tion, InterleukCytokinSynthesis, simulating the 
activation of NF-kB-inducing kinase and as a 
result – blocking the process of apoptosis or the 
action of bindingRIPwithRAIDD (RIP interacts 
with adapter proteins RAIDD, which can bind 
caspase 2 and activate apoptotic cell death (be-
havior CASPASE_CYCLE_ACTIVATION))) 
or bindingTRADDwithFADD connection of 
the TRADD adapter protein with FADD pro-
teins (activation of the signaling complex of cell 
death ((behavior CASPASE_CYCLE_ACTIVA-
TION))) or blocking the process of apoptosis by 
connecting with the protein с-FLIP (action of 
binding FADDwithсFLIP)) .

Behaviors CASPASE_CYCLE_ACTIVATION, 
MITOCHONDRIA_APOPTOSIS); MORPH-
?LOGICAL_CELLS_CHANGES correspond to 
the processes of activation of the caspase cycle, 
opening of mitochondrial channels and activa-
tion/maintenance of the cell apoptosis process, 
morphological changes of the cell as a result of 
achieving the irreversibility of the apoptosis pro-
cess, respectively, and also consist of sets of actions 
that model the interactions between the relevant 
agents participating in these processes (caspases, 
Bcl-2 family proteins, cytochrome, APAF-1, etc .) .

Since the task of this experiment is to deter-
mine such properties as reaching the final stage 
of cell apoptosis under different values of envi-
ronmental parameters, and the main biochemi-
cal marker of apoptosis is the cleavage of chro-
mosomal DNA, which leads to an increase in the 
concentration of Ca2 ions in the cell nucleus and 
the presence of dependent proteases in the cell 
nucleus (DFF, AIF, EndoGin, etc .), under the 
action of which DNA fragmentation occurs, the 
formula that determines the achievement of the 
final stage of the apoptosis process in the cell is 
defined as:

ConcentrationСа2>NormalConcentration 
&& (АІFinNucleus==1 || DFFinNucleus==1 || 
ЕndoGinNucleus==1) && DNAfragmentation==1

The reachability of this formula indicates the 
reachability of the specified property under the giv-
en initial parameters . For example, in the experi-
ment, it was determined that under the condition of 
the advantage of connections of the adapter protein 
TRADD with DD-containing FADD proteins and, 
accordingly, under the conditions that the activity 
of procaspase 8 will be higher than the activity of 
the c-FLIP inhibitor, and the activity of bcl2 fam-
ily proteins capable of inducing apoptosis will be 
higher than the activity of its inhibitors (procas-
pase8Concentration > сFLIPConcentration && 
bcl2Inhi-bitionActivity < bcl2InductionActivity) 
the mitochondrial pathway of cell apoptosis will 
additionally be launched and, accordingly, the 
proapoptotic protein – AIF will be released and 
translocated to the nucleus, due to which the deg-
radation phase of cell apoptosis will be reached . 
Therefore, the achievement of the specified prop-
erty will be proven .

We also consider the need to model reversible 
biochemical processes and reactions (reactions 
that can co-occur in the forward and reverse di-
rections), which is determined by the behavioural 
equation and the prerequisites for each action . So, 
for example, if there is a deficiency or an excess of 
certain agents capable of influencing the develop-
ment of the apoptosis process or caspase cycle at a 
certain stage (ATP level, temperature, acidity, etc .), 
we can return to the previous phase (transition to 
the execution of an action or fragment of behaviour, 
which corresponds to the given condition) .

As a result of running the model, we get a sce-
nario/set of possible scenarios (depending on 
whether we perform concrete or symbolic model-
ling) of behaviour and determine the reach of the 
stage of the onset of morphological changes in the 
cell depending on the ratio of factors inducing or 
inhibiting the process of cell apoptosis .

It is worth noting that such a model is not com-
plete and ready for real use in the medical field . 
These are only the first steps of an experiment that 
shows the possibilities of using the proposed method .

Conclusions

The search for new approaches and methods to the 
modelling and research of experiments in biology, 
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in particular, the processes that occur in cells under 
various scenarios of interaction with external and 
internal factors of influence (radiotherapy, nano-
technology, inflammatory processes, etc .), remains 
an open issue . Research on pathological apoptosis 
and the possibility of using this type of cell death 
in medical practice (oncology treatment, cardio-
vascular diseases, human immunodeficiency virus, 
etc .) deserve special attention .

Hybrid models and methods for systems biology 
and medicine (including working with hybrid for-
malisms such as temporal and hybrid automata), 
combining models by integrating combinatorial 
and continuous constraints, and using machine 
learning to design models and define their param-
eters are important steps in solving open issues in 
the field of modelling and research of relevant pro-
cesses and systems . However, despite the availabil-
ity of more and more data on existing proteins and 
nucleic acids, modelling methods and tools, the 
development and use of a wide range of combined 
methods and tools for modelling and computing 
large molecular systems is one of the main chal-
lenges facing scientists at the intersection of natural 
sciences and exact sciences .

One of the approaches that, in our opinion, will 
allow us to solve most of the open issues is the neu-
rosymbolic approach, that is, the approach that, 
in this case, will combine the methods of neural 
networks and algebraic modelling . The main ad-
vantage of applying the proposed approach is that 
it provides an opportunity to derive consequences 
from existing laws and, therefore – can provide 
new facts and theories that will allow solving com-
plex problems . In other words, the use of an alge-
braic approach in combination with the methods 
of neural networks allows the determination and 
formal proof of certain properties of objects (in this 
case – charged particles, atoms, organic and inor-
ganic substances, cells, viruses, etc .) or processes, 
and also, the searching of objects or the necessary 
values of their parameters that correspond to the 
specified properties .

Although research on the application of the 
proposed approach in the field of biology is not 
yet complete, and we are currently working on 
expanding the base of formalized knowledge, the 

first obtained results of modelling interatomic and 
intermolecular interactions, intracellular pro-
cesses indicate that the proposed neurosymbolic 
approach is effective and promising for modelling 
biochemical processes and biological systems .

The following steps are the study of the neces-
sary initial values of the agent attributes and the 
modelled environment, the expansion and compli-
cation of the model, the conduct of forward con-
crete modelling (to compare the obtained results 
with the data of biological experiments) and back-
ward modelling on the obtained models, as such, 
which will allow determining the necessary param-
eters of the attributes of the agents and environ-
ment required to reach the specified property . In 
particular, we see the possibility of continuing the 
research for modelling the following experiments:

1) Study of the effects of the use of nanopar-
ticles for the controlled production of ROS and 
photothermia aimed at the induction of oxidative 
stress and selective death of tumour cells (reach-
ing the degradation phase of tumour cell apopto- 
sis – forward modelling; determination of the nec-
essary initial state of the environment under which 
it is possible to achieve the desired behaviour sce-
nario (temperature indicators, concentration and 
structures of substances, acidity, characteristics of 
cells and nanoparticles under investigation, etc .) – 
backward algebraic modelling) .

2) Study of the influence of different doses of ra-
diation on DNA damage, increase in the level of 
ROS (reactive oxygen species) as a prerequisite for 
the intracellular initiation of the process of patho-
logical cell apoptosis (achievement of the degra-
dation phase of tumour cell apoptosis – forward 
modelling; determination of the necessary initial 
state of the environment under which it is possible 
to achieve the desired behaviour scenario (indica-
tors of temperature, concentration and structure of 
substances, acidity, characteristics of the cell under 
investigation, etc .) – backward algebraic model-
ling) .

3) Study of the effect of cofactors, activators and 
inhibitors on the change in the activity of enzymes 
(metaloproteases, glutaminase) (achieving the 
degradation phase or blocking the process of cell 
apoptosis – forward modelling; determination of 
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the necessary initial state of the environment under 
which it is possible to achieve the desired scenario 
of behaviour (temperature indicators, concentra-

tion and structure of substances, acidity, charac-
teristics of the cell under study, etc .) – backward 
algebraic modelling) .
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НЕЙРОСИМВОЛЬНИЙ ПІДХІД У БІОЛОГІЧНИХ ДОСЛІДЖЕННЯХ

Вступ . Моделювання та вивчення процесів і методів регуляції міжклітинних та внутрішньоклітинних сигнальних 
каскадів, що беруть участь у процесі запрограмованої загибелі клітин, та пошук речовин, здатних впливати на 
активацію чи гальмування процесу апоптозу клітин та способів їх транспортування до заданої клітини, є однією з 
багатьох актуальних і відкритих проблем біологічних досліджень .

Мета . Дослідити задачу пошуку методів створення нових ліків для розробки ефективних методів лікування, 
для чого розробити новий підхід до моделювання біохімічних процесів та біологічних систем – нейросимвольний 
підхід, заснований на формалізмі алгебри поведінки та алгебраїчної мови моделювання APLAN у поєднанні з 
нейромережевими методами .

Методи . Безпечним і швидким методом розв’язання даних задач, який не потребує дослідження живих 
організмів, є комп’ютерне молекулярне моделювання . За останнє десятиліття запропоновано та розроблено багато 
підходів та інструментів . До таких методів належать сучасні методи штучного інтелекту, засновані на технології 
нейронних мереж, і методи моделювання взаємодій у біологічних і хімічних процесах на різних рівнях абстракції . 
Нейронні мережі використовуються для отримання представлення лігандів, білкових сполук тощо, а також для 
побудови прогнозних моделей властивостей молекулярних сполук, які широко використовуються в дослідженнях 
відкриття ліків . Методи моделювання як для неперервних, так і для дискретних моделей застосовуються з 
використанням різних підходів: статистичного, імовірнісного, імітаційного та візуального . Найбільш відомі та 
використовувані методи молекулярного моделювання включають метод докінгу, метод молекулярної динаміки та 
метод Монте-Карло .

Результати . На сьогоднішній день розроблено багато програмних засобів, які підтримують перлічені методи, 
проте розглянуті підходи та інструменти моделювання мають низку недоліків, що може мати критичне значення 
для проведення експериментів . У роботі представлено новий підхід до моделювання біохімічних процесів та 
біологічних систем, заснований на формалізмі алгебри поведінки і алгебраїчної мови моделювання APLAN у 
поєднанні з нейромережевими методами, так званий нейросимвольний підхід . Зокрема, розглядається можливість 
багаторівневого моделювання (від рівня атомної будови речовин і квантово-механічних взаємодій до рівня 
взаємодії біологічних об’єктів) та моделювання біологічних систем як складних гібридних систем, що поєднують 
дискретні та безперервні процеси . Також представлено короткий огляд сучасних досліджень використання 
нейромережевих методів у біологічних дослідженнях .

Висновки . Наведений підхід до моделювання біохімічних процесів та біологічних систем може бути 
використаний при створенні нових ліків та розробки ефективних методів лікування .

Ключові слова: молекулярне моделювання, алгебраїчне моделювання, методи нейронних мереж, штучний інтелект, 
моделювання біологічних експериментів, моделювання апоптозу клітин.


