DOI https://doi.org/10.15407/csc.2023.03.061
UDC 004.42

V.V. ZOSIMOV, PhD (Eng.) Sciences, Professor, Department of Applied
Information Systems, Taras Shevchenko National University of Ukraine,

ORCID: https://orcid .org/0000-0003-0824-4168,

Bohdan Hawrylyshyn, str. 24, Kyiv, 04116, Ukraine,

zosimovvv@gmail.com

0.S. BULGAKOVA, PhD (Ehg.), Sciences, Associate Professor, Department
of Applied Information Systems, Taras Shevchenko National University of Ukraine,

ORCID: https://orcid .org/0000-0002-6587-8573;

Bohdan Hawrylyshyn str. 24, Kyiv, 04116, Ukraine,

sashabulgakova2@gmail.com

OPTIMIZING COMPUTATIONAL PERFORMANCE WITH OPENMP
PARALLEL PROGRAMMING TECHNIQUES

The article presents a study of parallel computing, specifically comparing the performance of Open MP in C++ and Python. Fur-
thermore, the technologies of Open MP and TPL (C++, C#) are contrasted. Performance indicators were established that show-
case the advantages and dis-advantages of each methodology. In addition to the numerical data, the research provides insights
into the peculiarities of each parallel computing model, which can assist developers in choosing the right tool.

Keywords: Parallel computing, Open MP, TPL, C++, Python, threads, parallelism.

Introduction

In the modern world, computational technolo-
gies play a pivotal role in various spheres of human
activity. With the advent of multi-core and multi-
processor systems, there arose a need for efficient
programming to fully harness the potential of these
systems. However, parallel programming is a com-
plex task that requires specialized skills and tools.
OpenMP (Open Multi-Processing) is a popu-
lar specification for parallel programming in C,
C++, and Fortran languages [1]. However, other
implementations or adaptations of OpenMP have
emerged for different languages, such as Python,
Java, C#, and others. OpenMP allows developers
to seamlessly integrate parallel constructs into their
applications, ensuring scalability and portability.
Many researchers actively explore the capabili-
ties and limitations of OpenMP, as well as the de-

ISSN 2706-8145, Control systems and computers, 2023, N° 3

velopment of new methodologies and techniques
aimed at performance enhancement. For instance,
in [2], the intricacies of parallel programming using
TBB are discussed and compared with OpenMP.
In [3], authors introduced a framework (SPar)
as a solution for simplifying the development of
parallel stream processing applications based on
OpenMP, demonstrating that this solution is effi-
cient in terms of performance and code complexity
reduction. [4] delves into the challenge of optimiz-
ing software for heterogenecous supercomputers,
especially those with GPU support. The authors
suggest using a task-based programming model
with MPI+OpenMP (using the target directives
from versions 4.0 and 4.5) to achieve a high degree
of asynchronous operations and enhance perfor-
mance on heterogeneous architectures. Article [5]
introduces a new approach to managing implicit

61

V.V. Zosimov, O.S. Bulgakova

parallelism in library functions. Authors propose
using "moldable tasks" to express this implicit par-
allelism and dynamically adjust the parallelization
degree of a task. For this, a new construct, task-
moldable, is introduced which generates multiple
tasks from a single function call.

Based on the above research, the significance of
parallel computationsin modern high-performance
systems becomes evident. Using OpenMP as a tool
for controlling parallel computations remains a key
aspect in application performance optimization.
Against this backdrop, the goal of our article is to
implement parallel computations using OpenMP
tools, and to conduct comparative evaluation of
program execution with varying implementations:
with OpenMP, without its use, and in comparison
with other distributed computation technologies.
Thus, we aim to provide an understanding of the
actual benefit of incorporating OpenMP into the
software development process.

Features and Application of the
OpenMP Parallel Programming
Standard

OpenMP (Open Multi-Processing) is a standard
for parallel programming in shared-memory sys-
tems that allows tasks to be distributed among
various processors within a computer or across a
network of computers [1]. OpenMP is based on
the idea of adding directives to the source code,
instructing the compiler on how to distribute the
execution of different parts of the program among
processors. For example, the directive "#pragma
omp parallel" creates a region of parallel code ex-
ecution that follows it, i.e., the code between the
curly braces that follow the directive. The OpenMP
compiler automatically distributes this code among
the processors available in the system.

For better control over resource distribution,
OpenMP provides the ability to specify different
types of task schedules among processors. For in-
stance, the directive "#pragma omp for" indicates
that the loop should be divided among processors.
For enhanced performance, scheduling parameters
can be set, such as the number of processors that

can participate in the distribution and the number
of iterations to be processed by each processor.

OpenMP also supports synchronization between
processors using directives like "#pragma omp bar-
rier", which blocks code execution on all proces-
sors until all processors reach a given point.

Since OpenMP is a standard supported by many
compilers, it allows easy code execution distribu-
tion across different shared-memory systems, in-
cluding various operating systems and processor
architectures. Moreover, OpenMP is relatively easy
to use and doesn't demand extensive knowledge in
parallel programming.

One of the main advantages of OpenMP is the
ability to combine parallel programming with con-
ventional sequential programming. This means that
sections of the program suitable for parallel execu-
tion can be easily isolated and distributed among
processors without altering the rest of the program.

However, OpenMP has its limitations. It doesn't
support distributed computations, meaning one
can't distribute code execution among computers
that don't share memory. Additionally, effectively
utilizing OpenMP can be a challenging task since it
requires considering various factors like the num-
ber of available processors, the size of the task, it-
eration scheduling, and so on.

Overall, OpenMP is a powerful and convenient
tool for parallelizing programs on shared-memory
systems. Its ease of use and widespread adoption
make it popular among developers looking to boost
the performance of their programs on multi-core
processors.

Methodologies for Evaluating Para-
llel Computing Efficiency

For the purpose of evaluating the technology's ef-
ficiency, we decided to choose a task that is not
complicated to implement (so that on various pro-
gramming languages, the solution can be relatively
easily implemented without the use of specific li-
braries). However, this task should have an increas-
ing time component and the ability to be divided
into separate computational processes that can run
concurrently. The task condition: develop a soft-
ware application that calculates the sum of the first
N terms of a given sequence.

62 ISSN 2706-8145, CHCcTeMH KepyBaHHA Ta KOMM'toTepH, 2023, N° 3

Optimizing Computational Performance with Open M P Parallel Programming Techniques

The study was conducted in stages:

Stage 1. Selection of programming languages.
To begin the task, it was necessary to choose the
programming languages on which this experiment,
described in the assignment, would be conducted.
The following languages were selected:

- Low-level language C++ with strict typing and
manual memory management;

- High-level language Python3 with dynamic
typing and automatic memory management.

Stage 2. Implementation.

Stage 3. Investigation.

For the selected programming languages, the
following comparison criteria were determined:

- Distributed computing technology: sequen-
tial execution (without parallelism), threads, and
OpenMP.

Threads are a powerful tool for improving appli-
cation performance and responsiveness.

It is the ability of a CPU, or a single core in a
multi-core processor, to provide multiple threads
of execution concurrently. This can be achieved
either by time-slicing (where a single processor
switches between different threads) or by truly
parallel execution if there are multiple processors/
cores available [6]. OpenMP provides a high-level
API for parallel programming based on compil-
er directives, making it relatively easy to use. It's
designed for portability, and code written using
OpenMP can easily move between different plat-
forms that support this standard. A key feature of
OpenMP is its fork-join parallelism model, where
the main thread branches off into multiple threads
when entering parallel sections and then joins back
after their completion. Thread management, their
creation, and termination are fully automated in
OpenMP. Synchronization is also simplified thanks
to built-in directives.

On the other hand, when working with ba-
sic threads, such as POSIX threads or Windows
Threads, a programmer requires a more detailed
and low-level thread management. This includes
manually creating, managing the thread's lifecycle,
and implementing synchronization mechanisms.
Such control might offer more flexibility but also
demands a greater attention to details, potentially
increasing programming complexity and error like-
lihood.

In conclusion, the choice between OpenMP and
basic threads depends on the specific requirements
of the task and the programmer's preferences.
OpenMP offers simplicity and portability, while
direct thread management provides flexibility at a
more granular level.

- number of members (number of iterations);

- execution time of the program.

Results

Table 1 presented the code fragment from the
program's execution at stage 2 using threads and
OpenMP .

In the C++ (Threads) code snippet, a function
called computeSum was created, which takes the
starting and ending index and a reference to the
variable S. This function calculates the sum of the
Fi values for the specified index range.

In the main function (main), we first ask the
user to enter the value of n, as before. A vector of
threads is then created, and the number of threads
to use is determined based on the number of cores
available in the system (thread::hardware concur-
rency()). The index range for calculation is equally
divided among the threads, and each thread is then
launched using the computeSum function.

After all the threads have completed their cal-
culations, the program waits for all the threads to
finish using the join method. Finally, the algorithm
calculates the time spent on the computation and
outputs the result to the console.

In the C++ (OpenMP) code snippet, OpenMP
is used to parallelize the loop that calculates the
sum of the series. The omp parallel for directive is
used to instruct OpenMP to parallelize the loop,
and the reduction(+:S) code is used to accumu-
late partial results into the final result. Each thread
executes a portion of the loop iterations, with the
number of iterations per thread determined by
OpenMP automatically.

Therefore, the #pragma omp parallel for direc-
tive creates a team of threads and distributes the
loop iterations among them. The reduction opera-
tion ensures that the sum S is computed in a thread-
safe manner, creating a separate copy of S for each
thread and accumulating the results of each thread
into the final value after the loop completes.

ISSN 2706-8145, Control systems and computers, 2023, N2 3 63

V.V. Zosimov, O.S. Bulgakova

Table 1. Code fragment using threads and OpenMP

Code fragment C++

Code fragment Python3

Threads

1nt main() {

time_ttime 1, time 2;
long int n;

long double S = 0;
printf("Enter <n>:");
scanf("%Id", &n);
time(&time_1);
vector<thread> threads;

int num_threads = thread::hardware concurrency();

long int chunk_size = n / num_threads;

for (int i = 0; i < num_threads; i++) {
long int start = i * chunk_size;

long int end = (i + 1) * chunk_size;
if (i == num_threads - 1) {

end = n;

}

def compute_sum(start, end, result):

local sum =0

for i in range(start, end):

local_sum += // formula of layer
result.append(local _sum)

n = int(input('Enter <i>: "))
timel = time.time()

S=Il

num_threads = ...

chunk_size = n // num_threads
threads = []

for i in range(num_threads):

start =i * chunk_size

end = (i + 1) * chunk_size if i < num_threads - 1 else n
thread = thread-ing. Thread(target=compute sum,
args=(start, end, S))

threads.append(thread)

threads.push_back(thread(computeSum, start, end, thread.start()
ref(S)));
} for thread in threads:
thread.join()
for (auto& t : threads) {
t.join();
1
OpenMP

time(&time_1);

#pragma omp parallel for reduction(+:S)
for (int i=0; i<n; i++) {

S +=...// formula;

t

time(&time_2);

printf("Sum of Fi's: %Lf\n", S);
printf("Time: %li s\n", time_2 - time_1);

num_threads =...// num_threads
chunk size =n // num_threads
results = np.zeros(num_threads)

with

omp.parallel(num_threads=num_threads):

thread num = omp.thread num()

start = thread num * chunk_size

end = (thread num + 1) * chunk_size if thread num <
num_threads - 1 else n

results[thread num| = com-pute sum(start, end)

result = np.sum(results)

In the Python3 (Threads) code snippet, a function
named compute_sum was created that takes the start-
ing index, the ending index, and a list for storing the

64

local sum computed by each thread. This function
calculates the sum of the Fi values for the specified
index range and adds the local sum to the final result.

ISSN 2706-8145, CucteMHn KepyBaHHA Ta KOMIT'tIOTepH, 2023, N° 3

Optimizing Computational Performance with Open M P Parallel Programming Techniques

In the main function, we first ask the user to en-
ter the value of n, as before. Then an empty list S is
created to store the local sums computed by each
thread. The number of threads is determined and
the index range for computation is evenly divided
among them.

Alist ofthreadsis created, and for each thread, a
new thread object is instantiated using the Thread
constructor from the threading module. The com-
pute_sum function is passed as the thread's target
along with the starting index, ending index, and
the S list as arguments.

After all the threads have completed their cal-
culations, the program waits for all the threads to
finish using the join method. Finally, the S list is
summed up to get the final result, the elapsed time
is calculated, and both the result and the elapsed
time are displayed.

To integrate with OpenMP in the Python3 code,
the pyopenmp dependency was added. Instead of
using a list to store results, a numpy array named
results was used. This helps to optimize memory
access and prevent conflicts when accessing shared
resources. In the main code segment, the con-
struction with omp.parallel(num_threads=num__
threads): is used to create a parallel region. Within
this region, each thread computes its portion of the
task, as it gets a unique number using omp.thread
num(), which helps in determining which portion
of the range it should process. After computations,
each thread stores its partial sum in a separate cell
of the results array. After the parallel section ends,
all partial sums are combined to get the overall
result.

Overall, the rewritten program is much sim-
pler and more concise than the one with regular
threads, thanks to the powerful parallelization ca-
pabilities of OpenMP.

Table 1 presents the results of Stage 3.

Based on the obtained data, conclusions were
made regarding the efficiency of different types of
parallel computing programs for a specific task
calculating the sum of iterations of a given function
in threads. Upon analyzing, it was found that the
program written in C++ using OpenMP performs
voluminous computations somewhat faster than
the program using native threads, and much faster

than the program without threads, while obtaining
identical, that is, the only correct answers.

While the capabilities of OpenMP are vast and
impressive, it would be intriguing to juxtapose
it with other parallel computing technologies to
have a holistic understanding of the advancements
in this domain. One such counterpart that merits
consideration is the Task Parallel Library (TPL) in
C# [7].

The Task Parallel Library (TPL) is a set of public
types and APIs in the System.Threading and Sys-
tem.Threading. Tasks namespaces. It simplifies the
process of adding parallelism and concurrency to
applications. TPL, built on the low-level primitives
ofthe .NET Framework, integrates efficiently with
the C# language and supports a variety of paral-
lel operations like parallel loops and parallel tasks.
TPL scales the degree of concurrency dynamically
to most efficiently use all the processors that are
available. Table 3 shows a comparison of the two
technologies.

Based on the presented table 4, it is evident that
C++ using OpenMP typically emerges as the fast-
est processing method compared to the other ap-
proaches. This technology demonstrates especially
commendable results with larger values of N, high-
lighting its strong scalability. On the other hand, C#
programs utilizing TPL perform faster than equiva-
lent C# programs that use native threads, under-
scoring the effectiveness of TPL within the context
of asynchronous programming in C#. Although, at
smaller N values, the difference between C++ with
OpenMP and C++ using native threads isn't stark-
ly pronounced, as N increases, the programs with
C++ and OpenMP become considerably more ef-
ficient. Moreover, C++ programs generally execute
more swiftly than their C# counterparts. However,
it's noteworthy that the performance gap narrows
when TPL is adopted for C#. As N grows, the per-
formance disparity between the different parallel-
ization technologies becomes more pronounced,
especially when contrasting C++ (OpenMP) with
other methods. In conclusion, the choice among
various parallelization technologies will hinge on
specific project requirements, but the data from
this table emphasizes the advantages of deploying
OpenMP in C++ for computation-intensive tasks.

ISSN 2706-8145, Control systems and computers, 2023, N2 3 65

V.V. Zosimov, O.S. Bulgakova

Table?2. Parallel technology comparison

N Time (»Yithout parallel- Time (threads), ms Time (OpenMP), ms
ism), ms
C++ 100 42 6 6
1000 39 6 5
10000 52 7 6
100000 68 13 7
1000000 75 64 33
10000000 747 564 242
100000000 6892 5248 2234
Python3 100 70 25 20
1000 140 45 35
10000 700 220 170
100000 6892 2101 1700
1000000 71200 19168 16983
10000000 680103 215000 165000
100000000 timeout Timeout timeout
Table 3. Comparison between OpenMP and TPL
Comparison OpenMP TPL

Language Specificity

Ease of Use and Integration

Performance

Flexibility and Granularity

Platform-independent. Designed for
C, C++, and Fortran.

Uses compiler directives, making par-
allelism straightforward in code. How-
ever, requires compiler support.

The performance largely depends on
the compiler and system capabilities.
Generally provides good speedup for
parallelizable tasks.

Offers fine-grained control
threading and parallel regions.

over

Tailored for C# and the .NET frame-
work.

Uses an asynchronous programming
model which may require a shift in
thinking for developers familiar with
traditional threading models.

Being deeply integrated with .NET,
TPL can leverage the platform's opti-
mizations. Might provide better per-
formance for specific .NET tasks.

Abstracts many complexities of
threading, focusing on higher- level
task-based parallelism. Might be less
flexible in some scenarios compared to
OpenMP.

Conclusion

Exploring parallel computing methodologies and
their performance across different programming
models has provided insightful observations. When
juxtaposing OpenMP with native threading in C++
and Task Parallel Library (TPL) in C#, OpenMP
in C++ consistently demonstrated superior per-
formance, especially for larger datasets. C#'s TPL

66

also showcased commendable efficiency, surpass-
ing native C# threading and narrowing the per-
formance gap when compared to C++ solutions.
While the advantages of using OpenMP in C++ for
computation-intensive tasks were clear, it was also
evident that language and platform specificity play
pivotal roles in determining parallelization per-
formance. Asynchronous programming models,

ISSN 2706-8145, CHCcTeMH KepyBaHHA Ta KOMM'toTepH, 2023, N° 3

Optimizing Computational Performance with Open M P Parallel Programming Techniques

Table 4. Parallel technology comparison: OpenMP and TPL

N Time C#(TPL), ms | 1M CH+ (OpenMP), | e C++ (threads), ms | Time C# (threads), ms

100 10 6 42

1000 7 5 39

10000 8 6 52

100000 18 7 13 68

1000000 79 33 64 75

10000000 684 242 564 747

100000000 4427 2234 5248 6892

such as TPL, offer significant boosts within their
specific contexts, like C#. In essence, while C++
with OpenMP stood out as an optimal solution for
parallel processing in this study, the choice of tech-
nology is influenced by the broader ecosystem and
specific requirements of each project.

Going forward, broadening the spectrum of
technologies investigated would be beneficial. In-
corporating frameworks like MPI or CUDA could
provide deeper insights into the parallel processing

REFERENCES

landscapes. Further, considering the influence of
underlying hardware components on performance
would be essential. Different CPU architectures,
memory management strategies, and even the role
of GPUs in parallel computation could be vital ar-
eas of study. Finally, real-world application testing,
taking into account the complexities of actual soft-
ware development scenarios, would offer a holistic
perspective on the applicability and performance of
these parallel technologies.

1. OpenMP, [online]. Available at: https://www.openmp.org/ [Accessed: 02 Aug. 2023].

2. Reinders, J., 2007. “Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism”.

3. Hoffmann, R.B., Lff, J., Griebler, D. et al. “OpenMP as runtime for providing high-level stream parallelism on multi-
cores”. JSupercomput 78, 7655—7676, 2022. https://doi.org/10.1007/s11227-021-04182-9.

4. Ferat, M., Pereira, R., Roussel, A., Carribault, P., Steffenel, LA., Gautier, T. “Enhancing MPI+OpenMP Task Based
Applications for Heterogeneous Architectures with GPU Support” OpenMP in a Modern World: From Multi-device
Support to Meta Programming. IWOMP 2022. Lecture Notes in Computer Science, vol 1352. Springer, Cham. 2022.

https://doi.org/10.1007/978-3-031-15922-0_1.

5. Polet, P ., Fantar, R., Gautier, T. “Introducing Moldable Tasks in OpenMP” Advanced Task-Based, De-vice and Com-
piler Programming. IWOMP 2023. Lecture Notes in Computer Science, vol 14114. Springer, Cham, 2023. https://doi.

org/10.1007/978-3-031-40744-4 4.

6. Parallel Programming Using Threads, [online]. Available at: https://www.oreilly.com/library/view/parallel-and-concur-

rent [Accessed 20 Aug. 2023].

7. Task Parallel Library (TPL), [online]. Available at: https://learn.microsoft.com [Accessed: 21 Aug. 2023].

Received 19.09.2023

ISSN 2706-8145, Control systems and computers, 2023, N2 3 67

V.V. Zosimov, O.S. Bulgakova

B.B. 3ocimos, n.1.H., npodecop, KuiBcbkuii HaltioHaabHUI yHiBepcuTeT iMeHi Tapaca [lleBueHka,
Vkpaina, ORCID: https://orcid .org/0000-0003-0824-4168, Scopus Author ID 57188682230,
04116, m. Kuis, By;1. bornana IaBpuwiminnna, 24, YkpaiHa,

zosimovvv@gmail.com

0.C. byreakosa, X.T.H., nolieHT, KuiBchbkuit HalioHaabHUI yHiBepcuTeT iMeHi Tapaca [lleBueHka,
Vkpaina, ORCID: https://orcid .org/0000-0002-6587-8573; Scopus Author ID 57188687900,
04116, m. Kuis, By;1. Bormana IaBpuwiminnna, 24, Ykpaina,

sashabulgakova2@gmail.com

OMNTUMIBALIA OBYUCITIOBATIBHOI TPOAYKTUBHOCTI 3A IOMTOMOTOIO METO/IB
IMAPAJIEJIbHOI'O [TPOI'PAMYBAHHA OPENMP

Beryn. [losiBa GaratosimepHux Ta 6araTorpolleCOPHUX CUCTEM BHMMAara€ e(QeKTUBHUX TPOTPaMHUX IiIXOMIB s
PO3KPUTTS iX ITOBHOTO MOTeHIIiamy. OIHaK ImapajeibHe TporpaMyBaHHS 3aJIMIIAETHCS CKIIaMHUM 3aBIaHHSM, 1110 BUMAarae
cren@ivHOT eKCrnepTru3un Ta iHCTpyMeHTiB. Open M P, BinoMuii cTaHAAPT I MapajeIbHOTO TTPOTrpaMyBaHHs, TTPOTIOHYE
pO3pOOHMKAM MOXJIMBICTh JIETKO BIIPOBAKYBaTH TapajieJibHi KOHCTPYKIIi B IXHi J0JaTKU, rapaHTylO4u MacliTa-
0OBaHICTh Ta amanTUBHICTh. bararo mociimkeHb 30cepekeHO Ha MOTeHLiadi Ta ooMexXeHHsIX Open M P, NpoONOHYIOUYU
HOBi METOAM IS MiABUILIEHHS MPOAYKTUBHOCTI. YCBIIOM/IIOIOUM KPUTUYHY POJIb MapajeJIbHUX OOUUCIEHb Y CyYacHUX
BUCOKOTIPOIYKTUBHUX CUCTEMaX, IIsI CTATTSI Ma€ Ha METi MPOJEMOHCTPYBATH BIIPOBAIKEHHST TTapaJieIbHUX O0YMCIIEHb i3
BUKopucTtaHHIM OpenMP. Mu MaeMO Hamip TIOPiBHATH BUKOHAHHS TIPOTPaMU B Pi3HMX CLIEHAPIsIX: i3 BUKOPUCTAaHHIM
OpenMP, 6e3 HbOTO Ta Yy TOPiBHSHHI 3 iHIIMMM METOAAMU TapajebHUX OOUMCIeHb. Y TaKWii Crocio, MU MparHeMo
BUCBITJIMTH peajbHi nepesaru iHterpatiii Open M Py npoliec po3poOKU MPOrpaMHOro 3a06e3rneyeHHsl.

Merta crarti. JlocHiokKeHHSI MOXJIMBOCTEN TapajieJIbHUX 00uYMcieHb 3a gornomoror OpenMP, MOpPiBHSHHS Oro
MPOMYKTUBHOCTI B Pi3HUX CIIeHAPisIX BUKOPUCTAHHSI, a TAKOX BUSIBJICHHS TiepeBar Ta ocoomBocTeil interpaitii Open MPy
Tpo1Ieci po3poOKM MTPOrpaMHOro 3a0e3rnevyeHHsl.

Metoau. CUCTeMHUIA MiaXix, aHATITUIHWI METOJI, eKCITepUMEHTAIBHUI METO/I.

Pesynsratu. [1pu nopiBHsiHHI Open M P 3 pinHum notokyBaHHsM B C++ ta Task Parallel Library (TPL) B C#, Open M P
B C++ NOCTIAHO MPOJAEMOHCTPYBAB BiAMiHHY MPOAYKTUBHICTh, OCOOJMBO JJIs1 OibIIMX HAOOpiB gaHux. TPL B C# Takox
BUSIBUB 3aCTyXKeHY e(eKTUBHICTb, TIepeBEPIIMBIIN PigHe MOTOKYBaHHS C# Ta 3By3WBIIM BiZICTaBaHHS Y TIPOXYKTUBHOCTI
MOpiBHSIHO 3 pimeHHsIMU Ha C++. Xoua mepeBaru BUKopucTtaHHsi OpenMP B C++ nis 3aBoaHb, 110 MOTPeOYIOTh
iHTEHCUBHUX 00YNCIICHD, OYJIM OYeBUIHUMM, CTAJIO SICHO, III0 MOBHA Ta TJIaT(hOpMEHHA crielidika BiIirpaloTh KJIIOUOBi
posi y BU3HAYEHHI MPOAYKTUBHOCTI Mapasesizaliii. ACMHXpOHHI MOJEi MporpamyBaHHs, Taki K 7TPL, ponoHyIOTh
3Havylle MPUCKOPEHHS y CBOIX KOHKPETHUX KOHTEKCTaX, Hanpukian, y C#. 3ne6inbuioro, xoua C++ 3 Open M P BuninsiB-
csl SIK ONTUMAaJIbHE PIllIEHHS TS MapajiesibHOi 00pOOKM B LIbOMY AOCHiIXKEHHi, BUOIp TEXHOJOTI1 3a7eXKUTh Bifl ILIMPILIOTO
€KOCHCTEMHOTO KOHTEKCTY Ta CIIeIIM(DIYHUX BUMOT KOXHOTO IMTPOEKTY.

BucHoBku. [IpeacraBieHo DOCTIIKEHHS MapajeIbHUX OOUMCIICHb, 30KpeMa TOPiBHSIHHS MPOXyKTUBHOCTI Open M P
y C++ i Python. Kpim Toro, mpoTUCTaBISIOThCS TexHooTii Open MP i TPL (C++, C#). Byno BcTaHOBICHO IMOKAa3HUKU
e(eKTUBHOCTI, SIKi IeMOHCTPYIOTh IepeBaru Ta HEAOJiKM KOXHOI MeToaoJoTii. OKpiM YMCIOBUX NaHUX, HOCTiIKEHHS
JIa€ 3MOTY 3p03YMITH OCOOJUBOCTI KOXKHOI MO MapajieIbHUX 00YMCIIEHb, 1110 MOXE IOMIOMOITH PO3POOHUKAM y BUOOPI
MPaBUIILHOTO iIHCTPYMEHTY.

Karouosi caosa: napanenvni oouucnenns, Open M P, TPL, C++, Python, nomoku, napasenism.

638 ISSN 2706-8145, CucteMHn KepyBaHHA Ta KOMIT'tIOTepH, 2023, N° 3

