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METHODS OF DIMENSIONS REDUCTION IN TEXT 
PROCESSING ALGORITHMS

Paper describes methods of dimensionality reduction widely used in artificial intelligence in general, and in computer linguistics 
in particular, such as Non-negative matrix factorization and Singular value decomposition from the point of use in methods of 
Latent Semantic Analysis and Method of Principal Components. Advantages and disadvantages of each method are given. The 
computational complexity was investigated and a comparison of performance on dense and sparse matrices of different sizes was 
made. It is proposed to use them to reduce the dimensionality also of multidimensional linguistic data arrays.
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Introduction

Dimensionality reduction methods are a very im-
portant step in the text clustering process. Solving 
such a problem is difficult due to the high dimen-
sionality of the data. Such a space with large di-
mensions reduces the efficiency of the process in 
general. The idea of these methods is to reduce the 
size of existing objects, turning them into a new 
space with low-dimensional objects.

Modern and widely used methods of dimension-
ality reduction are such methods as NMF and SVD 
[1–5]. This paper examines these methods to show 
their advantages and disadvantages from the point 
of usage in latent semantic analysis algorithms and 
the method of principal components. In text pro-
cessing and in the theory of pattern recognition, 
cluster analysis consists in dividing a data set into 

several topics. Each topic, also called a cluster, 
contains data sets that are similar to each other and 
different from other groups.

Similarly, when clustering texts, they are divided 
into groups or topics. Last years, many research-
ers have conducted research in this field because of 
its importance in the field of data extraction and 
searching in a huge amount of text documents. In 
the process of clustering, the information is provid-
ed without pre-processing, so the task is to com-
bine the given data set into important topics. Thus, 
clustering divides a given set of texts into M topics 
(clusters) so that the texts of one topic are "similar" 
and "different" from the texts of other topics. There 
are many real-world applications for the clustering 
process, including search engines and recommen-
dations systems.
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Latent Semantic Analysis

Latent semantic analysis (LSA), also known as la-
tent semantic indexing (LSI) is the main method 
used to analyze the relations between documents 
and terms (words, n-grams) in the collection and 
to extract high-level concepts and transform the 
presentation of documents according to the iden-
tified relations. This is achieved by reducing the 
factors of space terms-documents. Terms can be 
both words and their combinations, the so-called 
n-grams, documents – ideally: sets of thematically 
homogeneous texts, or simply any, preferably, volu-
minous text (several millions of word forms), arbi-
trarily divided into pieces, for example paragraphs.

The LSA concept was patented in 1988 by a 
group of researchers at Bell Communications Re-
search [6, 7]. The idea behind LSA was to overcome 
methods that only try to match search queries to 
the words from the document. Although this may 
seem sufficient for the purpose of searching for rel-
evant documents, an intuitive approach of search-
ing should be based on the conceptual content of 
the documents. LSA tries to overcome this problem 
by statistical analysis of hidden document struc-
tures. Thus, building a search engine that discovers 
meaningful relations is a common goal to solve the 
problem of incompetent search results. However, 
a general limitation of LSA is that there are cases 
where words have multiple meanings or polysemy.

LSA maps documents and individual words into 
the so-called "semantic space", in which all further 
comparisons are made. To construct the seman-
tic space, a term-document matrix is used, which 
contains the frequency of occurrence of terms in 
documents. To construct a semantic space for a 
language, LSA firstly transforms a large representa-
tive text corpus into a rectangular term-document 
matrix, each cell of which contains the number of 
times a given word appears in a given document.

At the same time, the following assumptions are 
made:

1. A document is just a set of words. Words order 
in documents is ignored.

2. The only thing that matters is how many times 
the word appears in the document.

3. The semantic value of the document is deter-
mined by a set of words that usually are used together.

4. Each word has a single meaning. This is, of 
course, a strong simplification, but it is what makes 
the problem solvable.

The term-document matrix X, which describes 
the frequency of terms, is used as the source infor-
mation.

Let’s suppose we have some educational sample 
of texts. Let's present it in the form of a matrix A, the 
columns of which are a

i
 – vectors of terms, n – the

number of terms. The term vector t
j
 is a column 

vector:
                      { }1 2, , ,j j j m ja a a a=

� … ,

where m is the number of documents in the training 
sample. The frequency of occurrence of the term 
in the document is equal to the number of occur-
rences of the term t

j
 in the document d

i
:

                                  ( , )i j j ia t f t d= .

Then the resulting matrix is decomposed in such 
a way that each document is represented as a vec-
tor, the value of which is the sum of the vectors cor-
responding to its component words. Similarities 
between words and words, documents and words, 
and documents with documents are calculated as 
scalar products, cosines, or other vector-algebraic 
metrics.

LSA commonly uses a long-known matrix alge-
bra method, singular matrix decomposition (SVD), 
which became widely used only after the advent of 
powerful digital computers and algorithms for their 
use in the late 1980s.

However, recently, usage of another approach, 
namely the use of non-negative matrix factoriza-
tion (NMF  Non-negative Matrix Factorization), 
is gaining more and more popularity due to the 
possibility of additional interpretation of the ob-
tained non-negative results.

Principal Component Analysis 

The method of principal components analysis 
(PCA) is one of the main ways to reduce the di-
mensionality of data with the loss of the minimum 
amount of information, developed by Karl Pearson 
in 1901. It is used in many areas, such as pattern 
recognition, computer vision, data compression, 
etc.
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The main task of the method of principal com-
ponents is to replace the original data with some 
aggregated values in a new space, while solving 
two tasks – the first of which is to combine the 
most important (from the point of minimizing the 
mean square metric) values into a smaller number 
of parameters, but more informative (reducing the 
dimensity of the data space), and the second is to 
reduce data noise.

The method of principal components is usually 
performed using the decomposition of the cova- 
riance matrix into its eigenvalues. However, this 
can also be done using singular value decomposi-
tion (SVD) of the data matrix A.

Let’s assume there is a data matrix A of size n p× ,
where n is the number of samples and p is the num-
ber of variables. Such a matrix is normalized, that 
is, the average values of the columns are subtracted 
and are now equal to zero.

On the next step, the n p×  covariance matrix C is 

defined as  
1

TX XC
n

=
−

. This is a symmetric matrix, 

so it can be diagonalized:
 		   TC VLV= ,

where V is a matrix of eigenvectors (each column 
is an eigenvector) and L is a diagonal matrix with 
eigenvalues iλ  in decreasing order along the diago-
nal. The eigenvectors are called the principal axes 
of the data. Projections of data on the main axes are 
called the main components, or the weights of the 
main components; they can be considered as new, 
transformed variables. The j-th principal compo-
nent is given by the j-th column of AV. The coor-
dinates of the i-th data element in the new space 
of the principal components are given by the i-th 
line of AV.

If we now perform the distribution on the singu-
lar value of A, we will obtain such distribution:

		  TA U SV= ,
where U is a unitary matrix and S is a diagonal ma-
trix of singular values of s

i
. From here it is easy to 

see that

 
2

/ ( 1) ,
1

T T TSC V SU U SV n V V
n

= − =
−

so, the right singular vectors of V are the principal 
directions, and the singular values are determined 
with the eigenvalues of the covariance matrix 

through  2λ / ( 1)i is n= − . The main components are 
set as follows:

 TAV U SV V U S= = .
PCA can also be formulated using approximate 

matrix factorization:
:A N d× ,
:N Z k× ,
:W k d× ,

A ZW≈ .

Singular Value Decomposition

The most common variant of LSA is based on the 
use of matrix decomposition with real elements 
by singular values or SVD decomposition (SVD –
Singular Value Decomposition). With its help, any 
matrix can be decomposed into a set of orthogonal 
matrices, the linear combination of which is a fairly 
accurate approximation to the original matrix.

In linear algebra, the singular matrix decompo-
sition is the factorization of this matrix into three 
matrices. It has some interesting algebraic proper-
ties and conveys important geometric and theoreti-
cal ideas about linear transformations. It also has 
some important applications in data science.

Singular matrix decomposition (SVD) is a pow-
erful computational tool. Modern algorithms for 
obtaining such a decomposition of general matri-
ces have had a profound impact on numerous ap-
plications in scientific and engineering disciplines. 
SVD is commonly used to solve unconstrained lin-
ear least squares problems, matrix rank estimation, 
and canonical correlation analysis. In computa-
tional science, it is commonly used in areas such as 
information retrieval, seismic reflection tomogra-
phy, and real-time signal processing.

Let A be an m n×  matrix and rank A = r. There-
fore, the number of nonzero singular values of 
matrix A is equal to r. Since they are positive and 
labeled in decreasing order, we can write them as 

1 1σ σ σn≥ ≥ ≥…   where  1 2σ σ σ 0r r n+ += = = =… .
Each singular value of iσ  is the square root of iλ  

(the eigenvalue of ATA) and corresponds to the ei-
genvector iv  of the same order. Now we can write 
the singular decomposition of matrix A in the next 
form:

                           ,TA U V= ∑
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where V is an n n×  matrix whose columns are v
i
. 

Then:
                         [ ]1 2 nV V V V= … ,
Σ is a diagonal m n×  matrix of the form:

 

1

2

σ 0 0 0 0
0 σ 0 0 0

0 0 σ 0 0
0 0 0 0 0

0 0 0 0 0

r

 
 
 
 
 ∑ =  
 
 
 
  

… …
… …

� � … � � � �
… …
… …

� � � � � � �
… …

.

U is an m n×  orthogonal matrix.
If the term-document matrix is used as the 

source information, as a result of the singular de-
composition, the matrix of the word space, the ma-
trix of the document space and the square diago-
nal matrix of the factor weights will be obtained as 
shown in Fig. 1.

However, for many applications, the number r 
of nonzero singular values is too large, making even 
Compact SVD impractical for usage in applica-
tions. In such cases, it may be necessary to truncate 
the smallest singular values to compute only  t<< r 
nonzero singular values. Truncated SVD is no lon-
ger an exact decomposition of the original matrix 
A, but rather provides an optimal approximation of 
the matrix of lower rank 

,t t tA U V ∗= ∑�
 where the U

t
 is matrix of size m t× , tΣ  is a t t×  diago-

nal matrix, and *
tV  is a t n×  matrix. Only t column-

vectors of U and t row-vectors of V* corresponding 

to the t largest singular values of  tΣ  are calculated. 
It can be much faster and more economical than 
SVD if  t << r.

Non-negative Matrix Factorization

Today, non-negative matrix factorization (NMF) 
is a very popular technology in artificial intelli-
gence in general, and in computational linguistics 
in particular. Using of non-negative factorization 
within the paradigm of latent semantic analysis [6], 
computer linguists apply this approach to solving 
such applied problems as classification, clustering 
of texts and terms, building measures of semantic 
proximity, automatic selection of such linguistic 
structures from text corpora and relations, such as 
the preferences of conjugation in sentences (Selec-
tive Preferences) and subcategorical frames of verbs 
(Verb Sub-Categorization Frames), which include 
data on the semantic and syntactic properties of 
connections between verbs and their arguments –
nouns in sentences, and many others. [8–11].

Non-negative matrix factorization decomposes 
the non-negative matrix V into the product of the 
non-negative matrices W and H:

V WH≈ ,
Where V is the matrix of size m n× , W m k− ×  

and H k n− × , k << n, k << m (Fig. 2.)
 The distance measurement function between 

two non-negative matrices can be used as a metric 
function. One such metrics is the square of the Eu-
clidean metric:

                     
22μ= ( )i j i j

i j
A B A B− = −∑ .

Fig. 1. Matrices of word space, document space and 
square diagonal matrix of factor weights
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Such a metric function is bounded from below. 
The lower bound 0 is reached if and only if A = B.

So, when using the Euclidean metric, matrix 
factorization goal is minimizing of 

2V WH−  un-
der the condition of non-negativity of W and H.

Such a metric function is non-increasing under 
the following rules [12]:

                  
( )

,
( )

T
i j

i j i j T
i j

W V
H H

W WH
←                         (1)

                    
( )

.
( )

T
i j

i j i j T
i j

VH
W W

WHH
←                        (2)

Execution of iterations of the algorithm contin-
ues until a stationary point is reached or the maxi-
mum number of iterations is executed.

At the same time, NMF has several advantages 
over other factors extraction methods in natural 
language processing. First, the matrices W and H 
have only non-negative elements, which simplifies 
their interpretation in terms of text understand-
ing. Second, the columns of matrix W should not 
be orthogonal. Hence, the resulting topics can be 
directly interpreted, which seems to be quite com-
mon for real-world documents.

Computational Complexity of  
Algorithms

Let’s consider the computational complexity of the 
truncated SVD for each step.

1. O(mn2) is required to calculate the matrix 
T n nA A R ×∈ .
2. Execution of the own decomposition 

T n nA A R ×∈  requires O(n3).
3. Obtaining the square root of each eigenvalue 

of TA A requires O(n).

4. Calculating 
σ
i

i
i

Avu =  takes O(n(mn + m)), 

since calculating Avi takes O(mn), while dividing by 

iσ  takes O(m). In total, we have n such equations, 
so O(n(mn + m)) is required.

The total computational complexity of the trun-
cated SVD is  2 3(2 ).O mn mn n n+ + +

Also widely used is calculation for eigenvalues 
using the Lanzosh algorithm, the computational 
complexity of which is equal to O(kn2) for k itera-
tions [13].

To calculate the computational complexity of 
non-negative matrix factorization, formulas 1 end 
2 can be reduced to their general form by making 
the replacement TH H′ = . We will get		

 	
1

1
1 1 1

( )
( ) ( ) ,

( )

T
t i j

t i j t i j T
t t t i j

V W
H H

H W W
−

−
− − −

′ ′=
′

                (3)

 	    1
1

( )
( ) ( ) .

( )
t i j

t i j t i j T
t t t i j

VH
W W

W H H−
−

′
=

′ ′
	             (4)

Thus, we can present both formulas (3) and (4) 
in one form, thanks to the replacement of H', W 
and VT, or W, H'  and V by A, B and S, respectively:

 	                
( )

.
( )

i j
i j i j T

i j

SB
A A

AB B
= 	             (5)

Formula (5) can be represented as a sequence of 
four steps (6, a–d):

                          C = SB,		         (6, a)
                         K = BTB,	  	        (6, b)
                         D = AK,	                       (6, c)

                       .ijij ij
ij

C
A A

D
=     	                       (6, d)

These steps have a computational complexity of 
O(k*(nnz(S)+n)), O(k2m), O(k2n), and O(kn) re-
spectively, where nnz(S) is the number of non-zero 
elements matrix S.

Thus, the total computational complexity of 
NMF is only

O(k*(nnz(S)+k2m+k2n+2kn).

Performance Testing
A comparison of the performance of the truncated 
singular expansion and non-negative matrix fac-
torization on dense and sparse matrices of differ-
ent sizes was made. To calculate the eigenvalues for 
the singular decomposition, the Lanzosh algorithm 
[14] was used. Non-negative matrix factorization 
was performed using the multiplicative rules of Lee 
and Song [12]. Both algorithms were performed 

Fig. 2. Non-negative matrix factorization
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with a limit of 200 iterations and a convergence 
rate of 41e− .

 Fig. 3, which shows the decomposition time of 
dense square matrices of various sizes, shows that 
non-negative matrix factorization takes less time 
with increase of matrix size. However, in the de-
composition of sparse matrices (Fig. 4), the singular 
decomposition turned out to be faster than the basic 
algorithm of non-negative matrix factorization.

 However, NMF, unlike truncated SVD, allows 
you to get results already after the first iterations, 
albeit with a larger error. Such data can be used and 

further updated, reducing the error. With truncated 
SVD, it is necessary to perform a certain number 
of iterations to obtain the required number of ei-
genvalues.

It is also worth noting that many parallel algo-
rithms for processing sparse matrices have been 
developed for both methods. At the same time, the 
block-diagonal algorithm of non-negative matrix 
factorization proposed in [15] makes it possible to 
significantly reduce the time of non-negative fac-
torization and to supplement the previously ob-
tained model with new data.

Fig. 3. Time of decomposition of dense matrices of different sizes

Fig. 4. Time for decomposition of sparse matrices of different sizes
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Using of Algorithms to Multidimen-
sional Arrays

A further development of natural language models 
in computational linguistics is the transition from 
two-dimensional matrices to multi-dimensional 
arrays of data, such as linguistic Subject-Predicate-
Appendix tensors containing frequencies of occur-
rences of word combinations by parts of speech. 
Usually, non-negative factorization of tensors is 
used to reduce the dimensions of linguistic tensors 
[16]. The main difficulties of non-negative factor-
ization of such linguistic tensors are their large size 
and significant sparseness.

 However, for certain applications, it is pos-
sible to expand tensors by layers in the matrix 
(Fig. 5) and their subsequent decomposition us-
ing singular value decomposition or non-negative 
matrix factorization. In this way, the matrices 
Subject-[Predicate-AppendixCombinations], Pre-
dicate-[Subject-Appendix Combinations], Appen-
dix-[Subject-Predicate Combinations] will be ob-
tained. Thus, based on the matrices obtained after 
the factorization of any of the above matrices, it is 
possible to restore the frequency of occurrences 
of the Subject-Predicate-Appendix combination 
from the initial tensor.

This approach can have additional application 
value in the construction of recommender systems, 
automatic continuation of text input, etc.

Conclusion

The non-negative factorization of matrices and the 
singular value decomposition of matrices are actu-
ally groups of algorithms. Both are commonly used 
for lower-rank factorization while minimizing the 
least-squares metric compared to the input data. 
The main difference is in the basis build by each 
algorithm.

With a singular value decomposition, an element 
from a data set is represented as a linear combina-
tion of vectors in the basis. So, there can be positive 
and negative coefficients, and they can have any 
value. The basis obtained by SVD helps to recon-
struct the data by minimizing the metric, but re-
ceived values are not easy to understand and do not 

have a specific meaning. In non-negative matrix 
factorization, the non-negativity constraint is im-
posed on the elements of the input and output ma-
trices. In NMF, the coefficients are non-negative 
numbers, and then each vector in the basis is usu-
ally a small part used to reconstruct the elements.

The advantage of non-negative matrix factor-
ization is twofold: first, it uses lower dimensional-
ity, which inherently makes further computations 
much more efficient. But what differentiates this 
analysis from singular value decomposition is that, 
depending on what the input data represents, the 
W columns often capture meaningful characteris-
tics of the data, and the H columns can be used to 
cluster the data in terms of those meaningful char-
acteristics.

However, SVD performs a "deeper" factoriza-
tion, as it outputs not only the U and V matrices, 
but also Σ. U and V are guaranteed to be an or-
thonormal basis, and Σprovides valuable infor-
mation about the amount of information in each 
subsequent basis dimension. Such information is 
not available in the non-negative factorization of 
matrices.

Fig. 5. Tensor expansion in a matrix
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МЕТОДИ ЗМЕНШЕННЯ РОЗМІРНОСТІ В АЛГОРИТМАХ 
ОБРОБКИ ТЕКСТІВ

Вступ. Методи зменшення розмірності є дуже важливим кроком у процесі кластеризації текстів. Вирішення такої 
задачі є складним через велику розмірність даних. Такий простір із великими розмірами знижує ефективність 
процесу загалом. Ідея цих методів полягає в тому, щоб зменшити розміри наявних об’єктів, перетворивши їх 
на новий простір із низькорозмірними об’єктами. Сучасними та широко вживаними методами зменшення 
розмірності є такі  методи, як NMF та SVD.

Мета статті. Дослідити переваги та недоліки методів зменшення розмірності для застосування в алгоритмах 
обробки текстів, порівняти обчислювальну складність та швидкодію доліджуваних методів. 

Методи. Системний підхід, аналіз, теорія складності обчислень.
Результати. Здійснено порівняння швидкодії усіченого сингулярного розкладу та невід’ємної матричної 

факторизації на щільних і розріджених матрицях різних розмірів. За результатами тестувань визначено, що 
невід’ємна матрична факторизація потребує менше часу для розкладу щільних квадратних матриць. Проте при 
розкладі розріджених матриць сингулярний розклад виявився швидшим ніж базовий алгоритм невід’ємної 
матричної факторизації.

Висновки. Невід’ємна факторизація матриць та сингулярний розклад матриць насправді об’єднують групами 
алгоритмів. Обидва зазвичай використовуються для факторизації нижчого рангу, при цьому мінімізують помилку 
найменших квадратів порівняно з вхідними даними. Основна відмінність полягає  в тому, який базис будує кожен 
алгоритм.
Ключові слова: штучний інтелект, комп'ютерна лінгвістика, паралельні обчислення.


