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METHODS OF DIMENSIONS REDUCTION IN TEXT

PROCESSING ALGORITHMS

Paper describes methods of dimensionality reduction widely used in artificial intelligence in general, and in computer linguistics
in particular, such as Non-negative matrix factorization and Singular value decomposition from the point of use in methods of
Latent Semantic Analysis and Method of Principal Components. Advantages and disadvantages of each method are given. The
computational complexity was investigated and a comparison of performance on dense and sparse matrices of different sizes was
made. It is proposed to use them to reduce the dimensionality also of multidimensional linguistic data arrays.
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Introduction

Dimensionality reduction methods are a very im-
portant step in the text clustering process. Solving
such a problem is difficult due to the high dimen-
sionality of the data. Such a space with large di-
mensions reduces the efficiency of the process in
general. The idea of these methods is to reduce the
size of existing objects, turning them into a new
space with low-dimensional objects.

Modern and widely used methods of dimension-
ality reduction are such methods as NMF and SVD
[1—5]. This paper examines these methods to show
their advantages and disadvantages from the point
of usage in latent semantic analysis algorithms and
the method of principal components. In text pro-
cessing and in the theory of pattern recognition,
cluster analysis consists in dividing a data set into

several topics. Each topic, also called a cluster,
contains data sets that are similar to each other and
different from other groups.

Similarly, when clustering texts, they are divided
into groups or topics. Last years, many research-
ers have conducted research in this field because of
its importance in the field of data extraction and
searching in a huge amount of text documents. In
the process of clustering, the information is provid-
ed without pre-processing, so the task is to com-
bine the given data set into important topics. Thus,
clustering divides a given set of texts into M topics
(clusters) so that the texts of one topic are "similar"
and "different” from the texts of other topics. There
are many real-world applications for the clustering
process, including search engines and recommen-
dations systems.
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Latent Semantic Analysis

Latent semantic analysis (LSA), also known as la-
tent semantic indexing (LSI) is the main method
used to analyze the relations between documents
and terms (words, n-grams) in the collection and
to extract high-level concepts and transform the
presentation of documents according to the iden-
tified relations. This is achieved by reducing the
factors of space terms-documents. Terms can be
both words and their combinations, the so-called
n-grams, documents — ideally: sets of thematically
homogeneous texts, or simply any, preferably, volu-
minous text (several millions of word forms), arbi-
trarily divided into pieces, for example paragraphs.

The LSA concept was patented in 1988 by a
group of researchers at Bell Communications Re-
search [6, 7]. The idea behind LSA was to overcome
methods that only try to match search queries to
the words from the document. Although this may
seem sufficient for the purpose of searching for rel-
evant documents, an intuitive approach of search-
ing should be based on the conceptual content of
the documents. LSA tries to overcome this problem
by statistical analysis of hidden document struc-
tures. Thus, building a search engine that discovers
meaningful relations is a common goal to solve the
problem of incompetent search results. However,
a general limitation of LSA is that there are cases
where words have multiple meanings or polysemy.

LSA maps documents and individual words into
the so-called "semantic space", in which all further
comparisons are made. To construct the seman-
tic space, a term-document matrix is used, which
contains the frequency of occurrence of terms in
documents. To construct a semantic space for a
language, LSA firstly transforms a large representa-
tive text corpus into a rectangular term-document
matrix, each cell of which contains the number of
times a given word appears in a given document.

At the same time, the following assumptions are
made:

1. A document is just a set of words. Words order
in documents is ignored.

2. The only thing that matters is how many times
the word appears in the document.

3. The semantic value of the document is deter-
mined by a set of words that usually are used together.

4. Each word has a single meaning. This is, of
course, a strong simplification, but it is what makes
the problem solvable.

The term-document matrix X, which describes
the frequency of terms, is used as the source infor-
mation.

Let’s suppose we have some educational sample
of texts. Let's present it in the form of a matrix 4, the
columns of which are a, — vectors of terms, n — the
number of terms. The term vector L is a column
vector:

a,= {alj,azj,...,amj},
where m is the number of documents in the training
sample. The frequency of occurrence of the term

in the document is equal to the number of occur-
rences of the term t in the document d:

a; =tf(t,;,d,).

Then the resulting matrix is decomposed in such
a way that each document is represented as a vec-
tor, the value of which is the sum of the vectors cor-
responding to its component words. Similarities
between words and words, documents and words,
and documents with documents are calculated as
scalar products, cosines, or other vector-algebraic
metrics.

LSA commonly uses a long-known matrix alge-
bra method, singular matrix decomposition (SVD),
which became widely used only after the advent of
powerful digital computers and algorithms for their
use in the late 1980s.

However, recently, usage of another approach,
namely the use of non-negative matrix factoriza-
tion (NMF Non-negative Matrix Factorization),
is gaining more and more popularity due to the
possibility of additional interpretation of the ob-
tained non-negative results.

Principal Component Analysis

The method of principal components analysis
(PCA) is one of the main ways to reduce the di-
mensionality of data with the loss of the minimum
amount of information, developed by Karl Pearson
in 1901. It is used in many areas, such as pattern
recognition, computer vision, data compression,
etc.
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The main task of the method of principal com-
ponents is to replace the original data with some
aggregated values in a new space, while solving
two tasks — the first of which is to combine the
most important (from the point of minimizing the
mean square metric) values into a smaller number
of parameters, but more informative (reducing the
dimensity of the data space), and the second is to
reduce data noise.

The method of principal components is usually
performed using the decomposition of the cova-
riance matrix into its eigenvalues. However, this
can also be done using singular value decomposi-
tion (SVD) of the data matrix A.

Let’s assume there is a data matrix A of size n x p,
where 7 is the number of samples and p is the num-
ber of variables. Such a matrix is normalized, that
is, the average values of the columns are subtracted
and are now equal to zero.

On the next step, the nx p covariance matrix C is
T

defined as C = X )1(
n—
so it can be diagonalized:
C=VLV",
where V'is a matrix of eigenvectors (each column
is an eigenvector) and L is a diagonal matrix with
eigenvalues ), in decreasing order along the diago-
nal. The eigenvectors are called the principal axes
of the data. Projections of data on the main axes are
called the main components, or the weights of the
main components; they can be considered as new,
transformed variables. The j-th principal compo-
nent is given by the j-th column of AV. The coor-
dinates of the i-th data element in the new space
of the principal components are given by the i-th
line of AV.
If we now perform the distribution on the singu-
lar value of A, we will obtain such distribution:
A=USVT,
where Uis a unitary matrix and .S is a diagonal ma-
trix of singular values of 5. From here it is easy to
see that

C=VSU'USV" /(n-1)=V

. This is a symmetric matrix,

SZ

n—

VT

so, the right singular vectors of V are the principal
directions, and the singular values are determined
with the eigenvalues of the covariance matrix
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through A, =s’ / (n—1). The main components are
set as follows:
AV =USV'V =US.

PCA can also be formulated using approximate
matrix factorization:

A:Nxd,

N:Zxk,

W:kxd,

A=ZW.

Singular Value Decomposition

The most common variant of LSA is based on the
use of matrix decomposition with real elements
by singular values or SVD decomposition (SVD —
Singular Value Decomposition). With its help, any
matrix can be decomposed into a set of orthogonal
matrices, the linear combination of which is a fairly
accurate approximation to the original matrix.

In linear algebra, the singular matrix decompo-
sition is the factorization of this matrix into three
matrices. It has some interesting algebraic proper-
ties and conveys important geometric and theoreti-
cal ideas about linear transformations. It also has
some important applications in data science.

Singular matrix decomposition (SVD) is a pow-
erful computational tool. Modern algorithms for
obtaining such a decomposition of general matri-
ces have had a profound impact on numerous ap-
plications in scientific and engineering disciplines.
SVD is commonly used to solve unconstrained lin-
ear least squares problems, matrix rank estimation,
and canonical correlation analysis. In computa-
tional science, it is commonly used in areas such as
information retrieval, seismic reflection tomogra-
phy, and real-time signal processing.

Let A be an m x n matrix and rank 4 = r. There-
fore, the number of nonzero singular values of
matrix A is equal to r. Since they are positive and
labeled in decreasing order, we can write them as
6,20,2...206, where ¢,,,=06,,=...=06, =0.

Each singular value of o, is the square root of A,
(the eigenvalue of A”A) and corresponds to the ei-
genvector v, of the same order. Now we can write
the singular decomposition of matrix 4 in the next

form:
A=UXV",
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Documents Factors

wa~o =
>
|
wo=0%
S

Words
space

where V' is an nxn matrix whose columns are V.
Then:

v=[v,..7],
¥ is a diagonal m x n matrix of the form:
(6, 0 ... 0 0 i
0 o, ... 00
=10 0 o, 0 0
0 0 0 0 0
(100 ... 0 0 ... 0]

Uis an m x n orthogonal matrix.

If the term-document matrix is used as the
source information, as a result of the singular de-
composition, the matrix of the word space, the ma-
trix of the document space and the square diago-
nal matrix of the factor weights will be obtained as
shown in Fig. 1.

However, for many applications, the number r
of nonzero singular values is too large, making even
Compact SVD impractical for usage in applica-
tions. In such cases, it may be necessary to truncate
the smallest singular values to compute only << r
nonzero singular values. Truncated SVD is no lon-
ger an exact decomposition of the original matrix
A, but rather provides an optimal approximation of
the matrix of lower rank

A=U%V;,
where the U, is matrix of size m x ¢, S isa t x t diago-

nal matrix, and Vt* is a # x n matrix. Only 7 column-
vectors of U and # row-vectors of V* corresponding

Factors Documents
F : F
a a il
4 3
t t
9 Weights ° Documents
; ; space

Fic. 1. Matrices of word space, document space and
square diagonal matrix of factor weights

to the 7 largest singular values of X, are calculated.
It can be much faster and more economical than
SVD if ¢ << r.

Non-negative Matrix Factorization

Today, non-negative matrix factorization (NMF)
is a very popular technology in artificial intelli-
gence in general, and in computational linguistics
in particular. Using of non-negative factorization
within the paradigm of latent semantic analysis [6],
computer linguists apply this approach to solving
such applied problems as classification, clustering
of texts and terms, building measures of semantic
proximity, automatic selection of such linguistic
structures from text corpora and relations, such as
the preferences of conjugation in sentences (Selec-
tive Preferences) and subcategorical frames of verbs
(Verb Sub-Categorization Frames), which include
data on the semantic and syntactic properties of
connections between verbs and their arguments —
nouns in sentences, and many others. [§ —11].

Non-negative matrix factorization decomposes
the non-negative matrix V into the product of the
non-negative matrices Wand H:

V ~WH,

Where V is the matrix of size mxn, W —mxk
and H —kxn, k <<n, k <<m (Fig. 2.)

The distance measurement function between
two non-negative matrices can be used as a metric
function. One such metrics is the square of the Eu-
clidean metric:

n=l4-B|" =34, - Bij)z'
i
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Such a metric function is bounded from below.
The lower bound 0 is reached if and only if 4 = B.

So, when using the Euclidean metric, matrix
factorization goal is minimizing of |V - WH ||2 un-
der the condition of non-negativity of Wand H.

Such a metric function is non-increasing under
the following rules [12]:

W',
H, «H,——' (1)
] ] (WTWH)U-

0 < W (WHH"),,

Execution of iterations of the algorithm contin-
ues until a stationary point is reached or the maxi-
mum number of iterations is executed.

At the same time, NMF has several advantages
over other factors extraction methods in natural
language processing. First, the matrices Wand H
have only non-negative elements, which simplifies
their interpretation in terms of text understand-
ing. Second, the columns of matrix W should not
be orthogonal. Hence, the resulting topics can be
directly interpreted, which seems to be quite com-
mon for real-world documents.

Computational Complexity of
Algorithms

Let’s consider the computational complexity of the
truncated SVD for each step.

1. O(mn?) is required to calculate the matrix
A"4e R

2. Execution of the own decomposition
A" 4 e R™ requires O(n?).

3. Obtaining the square root of each eigenvalue
of A" A requires O(n).

Av.
4. Calculating u, =% takes O(n(mn + m)),
9

since calculating Avi takes O(mn), while dividing by
o, takes O(m). In total, we have n such equations,
so O(n(mn + m)) is required.

The total computational complexity of the trun-
cated SVD is O2mn® +mn+n’ + n).

Also widely used is calculation for eigenvalues
using the Lanzosh algorithm, the computational
complexity of which is equal to O(kn?) for k itera-
tions [13].
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Fig. 2. Non-negative matrix factorization

To calculate the computational complexity of
non-negative matrix factorization, formulas 1 end
2 can be reduced to their general form by making
the replacement H' = H”. We will get

(H))..=(H.), M, (3)
! C(H WL,
_ (VHt')i/‘
(VVt)ij =W, ),1/ m 4)

Thus, we can present both formulas (3) and (4)
in one form, thanks to the replacement of H', W
and V7, or W, H' and Vby A, Band S, respectively:

i = i % ©)
(4B"B),

Formula (5) can be represented as a sequence of

four steps (6, a —d):

C =SB, (6, a)

K=B'B, (6, b)

D = AK, 6, 0¢)
C.

Ay = Ay —=. (6, d)

)

These steps have a computational complexity of
O(k*(nnz(S)+n)), O(k*m), O(k*n), and O(kn) re-
spectively, where nnz(S) is the number of non-zero
elements matrix .

Thus, the total computational complexity of
NMEF is only

O(k*(nnz(S)+k>m+k*n+2kn).

Performance Testing

A comparison of the performance of the truncated
singular expansion and non-negative matrix fac-
torization on dense and sparse matrices of differ-
ent sizes was made. To calculate the eigenvalues for
the singular decomposition, the Lanzosh algorithm
[14] was used. Non-negative matrix factorization
was performed using the multiplicative rules of Lee
and Song [12]. Both algorithms were performed
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Fig. 4. Time for decomposition of sparse matrices of different sizes

with a limit of 200 iterations and a convergence
rate of le™.

Fig. 3, which shows the decomposition time of
dense square matrices of various sizes, shows that
non-negative matrix factorization takes less time
with increase of matrix size. However, in the de-
composition of sparse matrices (Fig. 4), the singular
decomposition turned out to be faster than the basic
algorithm of non-negative matrix factorization.

However, NMF, unlike truncated SVD, allows
you to get results already after the first iterations,
albeit with a larger error. Such data can be used and

20

further updated, reducing the error. With truncated
SVD, it is necessary to perform a certain number
of iterations to obtain the required number of ei-
genvalues.

It is also worth noting that many parallel algo-
rithms for processing sparse matrices have been
developed for both methods. At the same time, the
block-diagonal algorithm of non-negative matrix
factorization proposed in [15] makes it possible to
significantly reduce the time of non-negative fac-
torization and to supplement the previously ob-
tained model with new data.
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Using of Algorithms to Multidimen-
sional Arrays

A further development of natural language models
in computational linguistics is the transition from
two-dimensional matrices to multi-dimensional
arrays of data, such as linguistic Subject-Predicate-
Appendix tensors containing frequencies of occur-
rences of word combinations by parts of speech.
Usually, non-negative factorization of tensors is
used to reduce the dimensions of linguistic tensors
[16]. The main difficulties of non-negative factor-
ization of such linguistic tensors are their large size
and significant sparseness.

However, for certain applications, it is pos-
sible to expand tensors by layers in the matrix
(Fig. 5) and their subsequent decomposition us-
ing singular value decomposition or non-negative
matrix factorization. In this way, the matrices
Subject-[Predicate-AppendixCombinations], Pre-
dicate-[Subject-Appendix Combinations], Appen-
dix-[Subject-Predicate Combinations] will be ob-
tained. Thus, based on the matrices obtained after
the factorization of any of the above matrices, it is
possible to restore the frequency of occurrences
of the Subject-Predicate-Appendix combination
from the initial tensor.

This approach can have additional application
value in the construction of recommender systems,
automatic continuation of text input, etc.

Conclusion

The non-negative factorization of matrices and the
singular value decomposition of matrices are actu-
ally groups of algorithms. Both are commonly used
for lower-rank factorization while minimizing the
least-squares metric compared to the input data.
The main difference is in the basis build by each
algorithm.

With a singular value decomposition, an element
from a data set is represented as a linear combina-
tion of vectors in the basis. So, there can be positive
and negative coefficients, and they can have any
value. The basis obtained by SVD helps to recon-
struct the data by minimizing the metric, but re-
ceived values are not easy to understand and do not

2)

3

Fig. 5. Tensor expansion in a matrix

have a specific meaning. In non-negative matrix
factorization, the non-negativity constraint is im-
posed on the elements of the input and output ma-
trices. In NME, the coefficients are non-negative
numbers, and then each vector in the basis is usu-
ally a small part used to reconstruct the elements.

The advantage of non-negative matrix factor-
ization is twofold: first, it uses lower dimensional-
ity, which inherently makes further computations
much more efficient. But what differentiates this
analysis from singular value decomposition is that,
depending on what the input data represents, the
W columns often capture meaningful characteris-
tics of the data, and the H columns can be used to
cluster the data in terms of those meaningful char-
acteristics.

However, SVD performs a "deeper" factoriza-
tion, as it outputs not only the U and V matrices,
but also . U and V are guaranteed to be an or-
thonormal basis, and ¥ provides valuable infor-
mation about the amount of information in each
subsequent basis dimension. Such information is
not available in the non-negative factorization of
matrices.
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METOJN SMEHIIEHHA PO3MIPHOCTI B AJITOPUTMAX
OBPOBKHM TEKCTIB

Beryn. Metonu 3MeHILIEHHSI PO3MIPHOCTI € Ty>Ke BaXKJIMBUM KPOKOM Y MPOLECi KJlacTepu3allii TeKcTiB. BupilmieHHs Takoi
3a/a4i € CKJIaJHUM 4epe3 BeJIMKY PO3MIpHICTh JaHMX. Takuil TPOCTip i3 BEJIMKMMM pO3MipaMu 3HUXKYE €(DEKTUBHICTh
MpolLiecy 3arajioM. [aes uux MeTOAiB MOJISITa€ B TOMY, 11100 3MEHILIUTU PO3Mipy HassBHUX O0’€KTIB, MEPETBOPUBIIM iX
Ha HOBMI TIPOCTIp i3 HU3BKOPO3MipHUMU 00’€KTaMu. CydacHMMU Ta IIMPOKO BXMBAHMMU METOJAMHU 3MEHILEHHS
po3MipHOCTi € Taki MeToau, ik NMFra SVD.

Merta crarri. Jlocainutu nepeBaru Ta HelOJIiKU METO/iB 3MEHILEHHS PO3MipHOCTI JUISl 3aCTOCYBAaHHSI B aJITOPUTMax
00pOOKM TEKCTIB, MOPIBHATU OOUMCIIOBAIbHY CKJIAIHICTh Ta IBUAKOIIIO TOJiIXKYBaHUX METO/IIB.

Metomu. CUCTeMHUII Miaxia, aHali3, Teopisl CKIATHOCTI 00YMCIICHbD.

Pesynsratu. 31iiicHeHO MOpPIBHSIHHS INBUAKOIIl YCiYEHOIO CHMHIYJISPHOTO PO3KJIaay Ta HEBiA’€MHOI MaTpUYHOL
(hakTopuzalii Ha MIJBHUX i PO3PIIKEHUX MATpPULISIX Pi3HUX Po3MipiB. 3a pesyjbraTaMu TECTYBaHb BU3HAYEHO, IO
HEeBil’eMHa MaTpUyHa (pakTopu3sallis MoTpedye MeHIe yacy JUisl po3Kjany HIUIbHUX KBaapaTHUX MaTpullb. [Ipote mpu
PO3KJIa/i PO3PIMKEHNX MaTPUIlb CUHTYJISIPHUN DPO3KIIaj BUSBUBCS MIBUAIIMM HiXXK 0a30BUIl aJTOPUTM HEBil éMHOL
MaTpUYHOI (haKTOpU3allii.

BucHoBku. HeBin’emHa (pakTopusallis MaTpUIlb Ta CUHTYJISPHUI pO3KJIaa MaTpUIlb HACTIPaB/i 00’ €IHYIOTh TpylaMKi
anroputmiB. O0MIBa 3a3BMYali BUKOPUCTOBYIOTHCS ISl (DAaKTOpU3aLlii HUXKYOTO PAHTY, MPU LIbOMY MiHIMi3yIOTb TOMUJIKY
HalMEHILMX KBaJAPAaTiB MOPiBHIHO 3 BXiTHUMU AaHUMU. OCHOBHA BiJIMiHHICTb IOJISITA€ B TOMY, SIKWi1 Oa3uc Oyaye KOXeH
aJITOPUTM.

Karouosi caosa: wmyunuii inmenekm, KOMN tomepHa AiHegicmMuKa, napanenvti 004ucieHHs.
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