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A SHORT OVERVIEW OF THE MAIN CONCEPTS OF 
ARTIFICIAL NEURAL NETWORKS

A significant increase in computer performance, the accumulation of a large amount of data necessary for training deep neural 
networks, the development of training methods for neural networks that allow you to quickly and efficiently train networks consist-
ing of a hundred or more layers, has led to significant progress in training deep neural networks. This allowed deep neural networks 
to take a leading position among machine learning methods. In this work, neural network paradigms (and their methods of train-
ing and functioning) considers, such as Rosenblatt perceptron, multilayer perceptrons, radial basis function network, Kohonen 
network, Hopfield network, Boltzmann machine, and deep neural networks. As a result of comparative consideration of these 
paradigms, it can be concluded that they all successfully solve the tasks set before them, but now, deep neural networks are the most 
effective mechanism for solving intellectual practical tasks.
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Introduction

The problem of artificial intelligence (AI) is of 
particular importance today. At the same time, ar-
tificial neural networks are one of the main tools 
for building AI. Therefore, the development of the 
theory of neural networks directly determines the 
progress in the creation of AI.

The capabilities of modern computers allow one 
to perform calculations at a speed that exceeds the 
capabilities of the human brain by many times. 
However, tasks that are trivial for humans, not re-
lated to calculations, remain extremely difficult for 
computers. Human abilities for associative storage 
of information, learning, generalization, process-

ing of information taking into account the context 
remain unattainable even for modern supercom-
puters. The purpose of constructing artificial neu-
ral networks is to build a computing algorithm that 
works according to the principles and mechanisms 
of the human brain. The following properties of 
neural networks can be attributed to such princi-
ples.

1. Neural networks, by analogy with the human 
and animal brain, are built (composed) of many 
simple elements that perform relatively simple 
calculations. These simple elements (neurons) are 
connected to each other by various connections.

2. Neural networks are able to improve their 
work (learn and/or adapt) using examples. 
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3. Solving problems with neural networks does 
not require the developer to devise a problem solv-
ing algorithm and program it. At the same time, the 
neural network is able to detect hidden patterns in 
the problem, initially unknown to the developer.

This review briefly describes the main types of 
artificial neural networks and the basic principles 
of their functioning.

General Concepts of Artificial Neural 
Networks. History

Basic Concepts 
An artificial neural network (ANN) is a mathemat-
ical model, as well as its software and/or hardware 
implementation, built according to the principle of 
organization and functioning of biological neural 
networks  networks of nerve cells (neurons) of a 
living organism. The term ANN arose while mod-
eling the structural organization and processes oc-
curring in the brain.

ANN is a system of connected and interacting 
simple processors (artificial neurons). Each such 
neuron, unlike processors of computers, performs 
a fairly simple operation  it calculates the value of 
a mathematical function, the arguments of which 
are the values of signals sent to this neuron by other 
neurons of the network. Being composed in a large 
complex network, such "neural processors", acting 
together, are able to perform quite complex tasks, 
including those that classical computer systems are 
often unable to perform.

The basic structural units of ANNs are a neuron 
and a connection between neurons. From a math-
ematical point of view, ANN is a graph in which 
neurons are vertices (nodes), and connections be-
tween them are edges (see Fig. 1).

In biological neural networks, neurons are con-
nected to each other by means of synapses: the 
more the number of synapses between two neu-
rons, the stronger the connection between them. 
In ANN, the value of the connection between 
two neurons can be expressed as a coefficient: the 
larger it is, the stronger the connection. Such a co-
efficient is called the "weight" of the connection. 
The signal, going from one neuron to another, is 
multiplied by the weight of the connection between 

them. Since one neuron can receive signals from 
many other neurons, these signals (in ANNs) are 
usually summed. Thus, we can say that each neu-
ron receives a "weighted sum" of signals from other 
neurons of the network connected to it. Fig. 2 il-
lustrates this description:

Rosenblatt's Perceptron

One of the first artificial neural networks ever de-
signed is called “perceptron” (from the Latin per-
ceptio  perception) [1]. It uses the model of infor-
mation perception by the brain and was proposed 
by Frank Rosenblatt in 1958.

In general, Rosenblatt's perceptron consists of 
three layers (and, correspondingly, of three types of 
elements (neurons): sensory, associative and reac-
tive ones: 

- Sensory elements (S-elements) are actually the 
sensors that receive signals from the outside world 
and transmit them to associative elements. Bio-
logical analogues can be, for example, eye retinal 
receptors. 

Fig. 1. An example of a neural network

Fig. 2. The general structure of the neural network
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- Associative elements (A-elements) are the 
neurons that process signals and calculate the "as-
sociation" between the input signals and the re-
quired reaction at the output. 

- Reactive elements (R-elements) are the neu-
rons that receive signals (weighted sum) from A-el-
ements and are activated when a specific threshold 
is exceeded. 

Thus, topologically, the network consists of 3 
layers: input (the layer of sensory elements) S, hid-
den (the layer of associative elements) A and output 
(the layer of reactive elements) R. Fig. 3 illustrates 
this description.

According to the modern terminology, the 
Rosenblatt perceptron can be classified as an artifi-
cial neural network:

- with one hidden layer;
- with a threshold transfer function;
- with direct signal propagation.
In order for the perceptron to correctly perform 

its functions (pattern recognition; classification), it 
must be trained. ANN training is basically a process 
of tuning the network connection weights in such a 
way that the result (the value of the R-element of 
the output layer) maximally meets expectations in 
the context of a specific sample (signals) submitted 
to the input.

In his works, Rosenblatt describes different ap-
proaches to perceptron training, calling them re-
inforcement systems. In these reinforcement sys-
tems, Rosenblatt drew on D. Hebb's ideas about 
learning in biological neural networks, proposed 

in 1949. [2]. Mentioned Hebb’s ideas can be ex-
pressed (in a simplified form) as follows:
 If two neurons on both sides of a synapse (con-

nection between two neurons) are activated simul-
taneously, then the weight (strength) of this con-
nection is growing.
 If two neurons on either side of a synapse fire 

asynchronously, the weight (bandwidth) of that 
synapse decreases.

The classic method of training a perceptron is 
the method of error correction. It is a type of unsu-
pervised learning, in which the weight of the con-
nection does not change as long as the current 
response of the perceptron remains correct. Once 
an incorrect reaction emerges, the weight of the 
connection decreases. (Rosenblatt, however, only 
permitted A – R connection weight changes, while 
S – A connections were assigned only once (at the 
beginning of the learning procedure), a random 
value, and did not participate in learning process).

Perceptron convergence theorem proves that a 
perceptron trained using such an algorithm always 
comes to a solution in a finite time.

In 1969, a book by Marvin Minsky and Seymour 
Papert [3] was published. It showed the fundamen-
tal limitations of simple perceptron. This led to de-
cline of interest in ANNs among many researchers.
Later, interest in neural networks, and Rosenblatt's 
ideas, in particular, revived. In 2001 a group of re-
searchers led by Ernst Kussul conducted experi-
ments on training a version of Rosenblatt percep-
trons with different numbers of elements in the A 
layer (up to 512,000) to recognize handwritten dig-
its of the MNIST database [4]. A recognition accu-
racy of 99.2% was achieved, which is comparable to 
the best results of the beginning of the 21st century. 
Later, the same group of researchers significantly 
improved the recognition accuracy of their models 
based on Rosenblatt perceptron [5, 6].

Multilayer Perceptrons

After the decline of interest in perceptrons caused 
by the publication of Minsky [3], their "re-in-
vention" by D. Rumelhart [7] took place in 1986. 
Although Rosenblatt's perceptrons are actually 
multi-layered, there was (and perhaps still is) a 

Fig. 3. Rosenblatt's perceptron
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misconception that it was Rumelhart who invent-
ed and first proposed the use of multi-layer neural 
networks with one or more hidden layers.

In a collection of articles published in 1986, Ru-
melhart suggested changing (correcting) connec-
tion weights not only of the output layer, but also of 
the hidden layer. The activation function was pro-
posed to make non-linear. It’s usually a sigmoidal 

function: 
1( ) .

1 xS x
e−

=
+

As a result, training a multilayer ANN ceases to 
be a trivial task. Rumelhart, along with other re-
searchers, proposed a method of error backpropa-
gation based on the principle of gradient descent 
along the error surface [8–10]. This method will be 
considered separately below.

Differences from Traditional  
Systems

Computing systems based on neural networks have 
a number of properties that classical computing 
systems lack (yet present in nervous systems of ani-
mals and humans). The main of them are:

1. The process of creating a neural network a 
learning process rather than a programming (or 
design) process.

2. The learning ability of a neural network gives 
a developer an opportunity to solve tasks with un-
known dependencies between input and output 
data, which allows one to work with incomplete 
data.

3. Resistance to noise in the input parameters – 
a neural network can independently determine the 
parameters that are irrelevant to analysis purpose 
and filter them out.

4. Adaptation to environmental changes – neu-
ral networks can be re-trained in new conditions 
caused by slight fluctuations in the parameters of 
the environment.

5. The potential fault tolerance of neural net-
works is a consequence of the distributed way of 
storing information in a neural network, due to 
which only considerable damage to the structure 
of the network significantly affects its performance.

6. Neural networks make it possible to create ef-
ficient software for highly parallelized computers. 

On the basis of neural networks, it is possible to 
solve the problem of the efficiency of simultaneous 
processing of multiple tasks for a wide class of tasks.

Types of Artificial Neural Networks

Classification According to Different Criteria
ANNs can be categorized according to various cri-
teria. Below is a list of the main ones, along with a 
brief description of them.

By type of input information:
 Analog – use information in the form of real 

numbers.
 Binary – operate with information presented 

in a binary form.
By the number of hidden layers:
 Single layer.
 Multi-layered.
 Including deep (more than two hidden layers).
By the type of learning procedure:
 Training with a supervisor – the expected out-

put results of the network are known.
 Learning without a supervisor – the neural 

network builds its weighted connection structure 
(connection matrix) basing only on input signals 
(influences); such networks are called self-organiz-
ing networks.
 Reinforcement learning is a system of assign-

ing penalties and incentives from the environment.
 Mixed learning.
By signal transmission time:
 Asynchronous – the neuron activating func-

tion depends not only on the connection weights, 
but also on the time of transmission of the signals 
through the communication channels.
 Synchronous (does not depend on the trans-

mission time).
By types of connections and activation func-

tions:
 The networks of direct propagation – all con-

nections are directed strictly from input neurons to 
output neurons.
 With linear/non-linear activation function.
 Recurrent neural networks – the signals from 

the output neurons or neurons of the hidden layer 
are partially transmitted back to the inputs of the 
neurons of the input layer or layers of a lower level.
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 Probabilistic neural networks – activation of a 
neuron occurs with a probability equal to its output 
signal (a real number from 0 to 1).
 Networks of radial basis functions – as activa-

tion functions radial basis functions are used. Also 
called RBF networks.
 Self-organizing maps – competitive neural 

networks trained without a supervisor, performing 
visualization tasks and clustering.

The most famous and significant types of neural 
networks are described below in more details.

Network of Radial Basis Functions

The radial basis network (RBF) [11, 12] is charac-
terized by the following features:

1. The only hidden layer.
2. The weights of the connections going from the 

receptors of the input layer to the neurons of the 
hidden layer are one valued.

3. Only neurons of the hidden layer have a non-
linear activation function - radial-basis.

Usually, the Gaussian "bell" is chosen as the ac-
tivation function:

	         ( )2
2( ) exp

2σ
i

i
i

x x
h x

 −
=  

  
,

where x is the input vector, x
i
 – the reference point 

(the centre of the radial function) or the i-th image 
of the training sequence, iσ  – is the “bell” width 
parameter.

As a metric || ||x xi−  the Euclidean distance is 
usually used:
  ( ) ( ) ( )2 2 2

1 1 2 2i n bx x x y x y x y− = − + − + + −… .

Each element of the hidden layer may corre-
spond to an instance of the training sample (in this 
case, the center of the radial activation function 
is equal to the corresponding instance – the sup-
port vector method), or, if there are too many such 
instances, the k-means method can be applied (if 
the training data represents a continuous function, 
the initial values of the specified cluster centers are 
placed at the minimum or maximum points), and, 
accordingly, k elements of the hidden layer with the 
centers of the radial functions at the mass centers 
of each of the k selected clusters are set.

The values of the hidden elements’ activation ra-
dial basis functions widths are chosen so that they 
are large enough, but the functions do not overlap 
each other significantly in the input data space. 
The K nearest neighbors algorithm can be applied:

2

1

1σ
K

i i k
k

c c
K =

= −∑ .

(In practice, the value of K is usually taken from 
the range from 3 to 5).

The elements of the output layer form a linear 
combination of the outputs of the neurons of the 
hidden layer:

1
( ) ( )

k

i j i j i
i

f x y w h x
=

= =∑ .

To find the weights of the output layer, the meth-
od of gradient descent can be applied (the Widrow-
Hoff delta rule, since the activation functions of 
the output elements are linear). Alternatively, the 
method of pseudo-inverse matrices can be applied:

The interpolation matrix H is found:

1 1 2 1 1

1 2 2 2 2

1 2

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

m

m

p p m p

h x h x h x
h x h x h x

H

h x h x h x

 
 
 =  
  
 

…
…

� � � �
…

the inversion of the product of the matrix H on the 
transposed matrix H is calculated:

     ( ) 11 TA H H
−− = ,

weight vectors are calculated according to the for-
mula

 1 TW A H y−= ,

Fig. 4. Radial base network (RBF)
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where y is the target vector of expected values of the 
output element.

It’s also worth mentioning the mixed learning 
method: first, the weights are calculated using the 
pseudo-inverse matrix method described above, 
and then the output layer is trained using the error 
backpropagation method.

RBF networks are good function approximators, 
and they are also used for prediction and classifica-
tion.

Kohonen’s Network 

Self-organizing feature map (SOFM) by Kohonen 
[13] – has two layers of neurons (elements): in-
put and output. Such a network is trained without 
a supervisor and is most often used for clustering 
and data visualization tasks. SOFM is a method of 
projecting a multidimensional space into a lower 
dimensional space. 

The input elements of the feature map are only 
intended to distribute the data of the input vector 
between the output elements of the network. The 
output elements are called cluster elements. Each 
input element is associated with each cluster ele-
ment. It is often convenient to interpret the weight 
values of a cluster element as coordinates describ-
ing the position of the cluster in the input data 
space [14]. SOFM is a competitive neural network 
 as a result of its work, only one output element is 
activated according to the WTA (winner-takes-all) 
rule.

Network training is performed as follows. Ini-
tially, the values of the weights of the output ele-
ments are set to random values from a limited 
range. Next, for each training vector, the proximity 
metric of this vector in the cluster element is calcu-
lated. To calculate the metric, the weighted values 
of the connections going to the cluster element are 
used. The simplest type of such a metric, for ex-
ample, can be the Euclidean distance:

( )2j i j ij
d w x= −∑ .

The element with the smallest distance wins, 
and its connection weights are modified to make 
the element "closer" to the input vector:

        ( ) ( 1) η( 1) ( 1)i j i j i i jw n w n n x w n = − + − − −  

here n  is the training epoch number,  ( )η i j i jw p p+ −= − – the train-
ing rate function – a special training coefficient 
of the network that is gradually reduced each new  
epoch. 

Generally, not only winner element’s weights 
are modified, but, also, the weights of other ele-

Fig. 5. Kohonen Network

Fig. 6. Hopfield network
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ments close to the input vector. The weights of 
these elements can be changed provided that they 
are close enough to the winning element (that is, 
some "radius" is set, which gradually decreases as 
the network is trained). Also, the weights of these 
elements may change depending on the degree of 
proximity to the winning element.

Hopfield’s Network

Hopfield's neural network is an autoassociative net-
work that behaves like a memory, which can restore 
a stored image, having received a distorted version 
of any stored sample as an input [15]. This recur-
rent network consists of one layer of elements con-
nected to each other (except for themselves). Each 
element of the Hopfield network receives as an 
input, (and also outputs) a value from the set {-1, 
1} (the same way as for the neurons with threshold 
activation function). 

Network training is performed in one step. The 
following formula is used to calculate the matrix of 
weighted values of connections:

T
i ii

W X X=∑ .

After calculating the matrix, its diagonal is ze-
roed (because the elements have no connection 
with themselves).

The network functions as follows. The output 
signals of the elements are set equal to the elements 
of the input vector X. One of the elements is select-
ed in a pseudo-random (uniform) manner and the 
weighted sum of the signals from all the remain-
ing elements is calculated. If the value of the sum 
is greater than zero, the state of the element is set 
to 1. If the value of the sum is less than zero, the 
state becomes equal to 0. If the value of the sum 
is 0, the state remains unchanged. The operation 
is repeated until the network reaches a stable state.
In a number of works, there are estimates of the 
number of images that can be stored in such a net-
work. One such general estimate is the following:

max 2ln
Np
N

= , 

where N – the number of network elements.
In [15], Hopfield proved that the network should 

converge to a stable set of activity values having 
considered the energy function of the system:

1
2 j i i jj i

E x x w−
= ∑ ∑ .

If element j changes its state by the value sj∆ , 
then the change of energy will be equal to

j j i ji
E s s w∆ = −∆ ∆∑ .

Boltzmann Machine

Boltzmann machine is a stochastic recurrent neu-
ral network suggested by Geoffrey Hinton and 
Terry Seynovsky in 1985 [16]. Boltzmann machine 
may be considered as a stochastic generative ver-
sion of Hopfield’s network [15]. This kind of neural 
networks utilizes the concept of so-called “simu-
lated annealing” method for the network state re-
fresh process.

The reason for using this method is the disad-
vantage of the Hopfield‘s network, which is a high 
chance of the network to converge to a local mini-
mum instead of the desired global one.

The algorithm of Boltzmann machine func-
tioning is based on the simulation of the physical 
process that occurs during the crystallization of a 
substance, such as the annealing of metals. It is as-
sumed that the atoms of the substance are already 
almost built into a crystal lattice, but transitions of 
individual atoms from one cell to another are still 
possible. The higher the temperature, the higher 
the activity of atoms. The temperature is gradu-
ally reduced, which leads to the fact that the pro-
bability of transitions to states with higher energy 
decreases. A stable crystal lattice corresponds to 
the minimum energy of atoms, so the atom either 
moves to a state with a lower energy level, or re-
mains unchanged. (This algorithm is also called 
the algorithm of N. Metropolis (after its author 
[17]). The main procedure of this algorithm is the 
random selection of a part of the system to change 
(in case of applying this algorithm to find the 
minimum of the real function of a binary vector X, 
this will be a change of a bit of the vector X). The 
change is always accepted if the global energy of 
the system decreases, and if an increase in energy 
is observed, then the changes are accepted accor-
ding to the probability:
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E
Tp e
−∆

= ,

where T stands for temperature.
After every M changes of the system state (M is 

a predefined number of cycles), that is, changes of 
any element state from "on" to "off" or vice versa, 
the temperature value T is forcibly reduced to a 
specified minimum 0 0( 1)T T ≥ .

With respect to the Boltzmann machine, the 
value of the probability that an element should be 
activated is calculated using the logistic function:

1

1
i on E

T

p
e

= −∆=
+

.

Similarly to the Hopfield network, the energy of 
the Boltzmann machine is defined as:

θi i j j i ii j i j
E x w x x

< <
= − −∑ ∑ ,

where θi i j j i ii j i j
E x w x x

< <
= − −∑ ∑ is the activation threshold of the i-th ele-

ment.
The elements of the Boltzmann machine are 

divided into two subsets: visible and hidden. The 
learning process of such a network consists of two 
phases: the fixation phase, during which the visible 
elements are “fixed” with the values of the training 
vectors, and the free execution phase, during which 
only the input elements are fixed (in case the visible 
elements are divided into inputs and outputs), or 
the states of the elements are not fixed at all. Dur-
ing the first phase for each sample the visible ele-
ments of the network are switched to the states cor-
responding to the binary values of the input vector 
of the sample, and then the network is allowed to 
stabilize by gradually reducing the “temperature” 
value. (At the same time, a hidden element is ran-
domly selected; the probability of its switching is 
calculated; it gets either switched or not; next ran-
dom hidden item is selected, etc.).

After the stabilization of the network, the state of 
all elements is fixed and the transition to the next 
sample is performed. During the second phase of 
the process, only the state of the input elements is 
fixed (if the visible ones are divided into inputs and 
outputs), or nothing is fixed, and the system is al-
lowed to stabilize a certain (large) number of times, 
each time gradually lowering the "temperature", as 
well as collecting statistics of element states when 
the network gets stable. Next, having the statistics 

of the first and second phases, for each phase the 
probability of each pair of (i, j) elements to be si-
multaneously “on” is calculated. Finally, for each 
connection of two elements, the change of weight 
is calculated as follows:

( )η i j i jw p p+ −= − ,

where i jp
+  is the probability of elements (i, j) being 

simultaneously in the switched-on state in the first 

Fig. 7. Boltzmann machine with hidden and visible ele-
ments

Fig. 8. Restricted Boltzmann Machine



26	 ISSN 2706-8145, Системи керування та комп'ютери, 2023, № 1

O.O. Holtsev, V.I. Gritsenko

phase and i jp
−  – in the second phase, where ( )η i j i jw p p+ −= − –

network training rate.
After modifying the weights, this set of opera-

tions is repeated until the network converges (that 
is, until the weights stop changing). Such an al-
gorithm is extremely inefficient and can take an 
extremely long time, as a consequence the fully-
connected Boltzmann machine is rarely used in 
practice. However, its "restricted" version, which 
has a relatively fast learning algorithm and has 
proven itself well in the area of deep neural net-
works, is much more popular.

A Restricted Boltzmann machine (RBM), is a 
type of generative stochastic neural network that 
determines a probability distribution over input 
data samples.

RBM got its name as a modification of the ful-
ly-connected Boltzmann machine. In RBM the 
neurons are divided into visible and hidden, and 
connections are allowed only between neurons of 
different types. Also, unlike the "unrestricted" ver-
sion, the method of simulated annealing is not used 
to train this type of network.

Deep Neural Networks

In simple terms, deep neural networks (DNNs) are 
neural networks with a large number of hidden lay-
ers, as well as a large number of neurons (elements) 
in each layer. ANNs, in general, are neural networks 
with direct connections, in which data is transmitted 
from the input layer to the output layer without feed-
back. One of the reasons of successful usage of deep 
neural networks is that such a network can automat-
ically extract meaningful features necessary for solv-
ing problems from the input data. In the alternative 
machine learning algorithms, these features have to 
be extracted manually by humans. There is a special 
direction of research  feature engineering. However, 
when processing large volumes of data, the neural 
network copes with feature selection much better 
than a human [18].

In the 20th century, deep neural networks were 
rarely considered by researchers due to the problem-
atic nature of training such networks: firstly, the per-
formance level of computational technologies did 
not allow high-quality experiments of training large 

neural networks in those years, secondly, the train-
ing methods had their drawbacks and limitations 
that are discussed in more detail in section “Deep 
Learning. Deep Belief Network Pre-Training”.

In 1980 Kunihiko Fukushima suggested a neural 
network architecture, which he called neocogni-
tron [19]. The architecture of the network claimed 
to be analogous to complex and simple cells in the 
cat's visual cortex [20]. Simple cells activate in re-
sponse to simple visual stimulus, such as an object 
boundaries orientation. Complex cells are less de-
pendent on the spatial structure of signals and fo-
cus on its more general features. In neocognitron, 
convolutional layers correspond to simple cells, 
and subsampling layers correspond to complex 
cells. Despite the fact that neocognitron is a deep 
neural network, deep learning is not used in it. 

 In 1987 Dana Ballard proposed an approach to 
training neural networks without a supervisor based 
on an autoencoder [21]. This approach is consid-
ered in more detail below. 

 In 1990 the error backpropagation algorithm 
was applied to train a neural network for handwrit-
ten digit recognition [22].

 In the late 1980s, it became clear that one error 
backpropagation algorithm would not be sufficient 
for effective deep learning. An explanation for this 
was presented in 1991 in [23, 24]  this is the vanish-
ing gradient problem. 

As a result, the vanishing gradient problem was 
proposed to be solved in various ways: evolution-
ary methods, Hessian-free optimization, very deep 
learning, long-short-term memory network, RelU 
function, deep belief networks, autoencoders. The 
last two methods are considered below.

Training Methods

Main Ideas

The general task of neural network training is to se-
lect the values of the connection weights in such a 
way that the network works in the best way. As men-
tioned earlier, there are two different types of neu-
ral network training: supervised and unsupervised. 
The unsupervised learning method was discussed 
above in the context of Hopfield networks, partly 
Boltzmann machines, and partly RBF networks. 
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When training a network with a supervisor, for 
each input vector of the training sample, the correct 
output vector is known in advance. The essence of 
the learning process is correcting the connection 
weights of the network neurons, if the network pro-
duces a result different from the desired one.

For a forward-propagational neural network 
with a linear activation function, it is easy to com-
pare the output of the network with the desired 
output and calculate the errors for each neuron:

δ j j jt o= − ,

where t
j
 is the desired value, a o

j
 – actual.

The change of the neuron's connection weight, 
in this case, is calculated by the Widrow-Hoff rule, 
called the delta rule 

 = ηδ ,i j j iw x∆

where= ηδ ,i j j iw x∆  is the learning rate of the network (con-
stant), and x

i
 – the signal sent to the i-th neuron. 

The errors of the neurons of the hidden layers are 
also calculated quite simply.

The problem arises when the activation function 
of the neurons of the network is non-linear. Let it 
be a sigmoidal function 

 
1σ= .

1 xe−+
In this case, the task is to calculate the change in 

the weight of a neuron in proportion to the "con-
tribution" of this neuron to the resulting error of 
the network. This can be achieved by applying the 
method of the errors backpropagation.
The Method of Error Backpropagation 
Let's make some definitions (Table 1).

Let ( , , )i jE w… …  – the error function of the net-
work that depends on the connection weight of the 
i-th and j-th neuron. Our task is to minimize the 
error. To do this, it is suggested to use the gradient 
descent method, according to which the argument 
must be changed in the direction of the antigradi-
ent of the function:

( ) ( 1) ηi j i j
i j

Ew n w n
w
∂

= − −
∂

.	             (1)

So: 

ηi j
i j

Ew
w
∂

∆ = −
∂

 .

The derivative of the network error from the 
weight of a specific connection can be decomposed 
according to the chain rule: 

i j

i j j i j

oE E
w o w

∂∂ ∂
=

∂ ∂ ∂
.

We apply the chain rule again

 i j j j

i j j i j

o o net
w net w
∂ ∂ ∂

=
∂ ∂ ∂

.

As a result, we have 

j j

i j j j i j

o netE E
w o net w

∂ ∂∂ ∂
=

∂ ∂ ∂ ∂
.  	             (2)

Let us first note 

δj
j

j j j

oE E
o net net

∂∂ ∂
= =

∂ ∂ ∂
.  	             (3)

Note that

i i j
j i

i
i j i j

o wnet
o

w w

 
∂ ∂  = =

∂ ∂

∑
.

We also note that j

j

o
net
∂

∂
  is the derivative of the 

output with respect to the input, and it corresponds 
to the derivative of the activation function of the 
neuron. Let's designate it ( )jf net′ . Then formula 
(2) takes the next form:

 ( )j i
i j j

E E f net o
w o
∂ ∂ ′= ⋅ ⋅
∂ ∂

.              (4)

Let's proceed to the calculation of the derivative  
j

E
o
∂
∂

. 

To do this, consider two cases: neuron j is in the 
output layer, and neuron j is not in the output layer.

Table 1. The some definitions

Definitions Explanation

η rate (speed) of network training

ix input signal to neuron i

jo output signal value of neuron j

jt desired signal value of neuron j

j i i j
i

net o w=∑ total input signal to neuron j 
from all neurons connected to it 
(weighted sum)

( )21
2 j j

j
E t o= −∑

The total error of the network is the 
error of all neurons of the output 
layer
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Let's start with the first case:

2 21 ( ( 2 )
2

1 ( 2 2 ) ( ) δ .
2

j j j j

j j

j j j j j

t t o o
E
o o

t o t o

 ∂ + − + ∂  = =
∂ ∂

= − + = − − = −

…

Now, for the second case, let's present E 
as a complex function that depends on all the 
weighted sums of signals coming from the neu-
rons of this layer (not the last) to the next one – 

( )( ), ( ), , ( ) .u j v j z jE net o net o net o…    

By the rule of finding the derivative of a complex 
function of multiple arguments

( )( ), ( )z f x t y t=

z z x z y
x x t y t
∂ ∂ ∂ ∂ ∂

= ⋅ + ⋅
∂ ∂ ∂ ∂ ∂

( )( ), ( ), , ( )

( ) ( )

( )
.

u j v j z j

j j

u j v j

u j v j

z j

z j

E net o net o net oE
o o

net o net oE E
net o net o

net oE
net o

∂∂
= =

∂ ∂

∂ ∂∂ ∂
⋅ + ⋅ +

∂ ∂ ∂ ∂

∂∂
+ + ⋅

∂ ∂

…

…

Since the weighted sum of the signals of all neu-
rons of this layer (L), applied to the input of the neu-
ron of the next layer k, is determined by the equation 

1 1
,

k k j k j j k j kL
net o w o w o w o w

∈
= = + +∑ � � � ��

… …

then all are derivatives 
( )k j

j

net o
o

∂

∂
 will be equal wjk.

So,  j k
kj k

E E w
o net
∂ ∂

= ⋅
∂ ∂∑ .

Using formula (2), rewrite the last expression as  t j .
As a result, we formulate the expression (3) for

both cases (the last and not the last layer) (See
Table 2 .)

Value δδis first calculated for the neurons of the 
output layer, then the previous layer, etc. Next, the 
weights are modified according to formula (1). In 
practice, each weight is also additionally modified 
by a small fraction of the weight change of the pre-
vious step. This helps reduce the chance of weight 
change fluctuation. 

Autoencoders 
An autoencoder is a special architecture of artifi-
cial neural networks, which allows to apply unsu-
pervised training [25] when using the method of 
error backpropagation. The simplest autoencoder 
architecture is a forward-propagational network, 
without feedback, most similar to a perceptron and 
containing an input layer, an intermediate layer, 
and an output layer. Unlike a perceptron, the out-
put layer of an autoencoder must contain as many 
neurons as the input layer.

The main principle of operation and training 
of autoencoder networks is getting the network to 
produce output layer result as close to the input 
as possible. To make sure the solution does not 
turn out to be trivial, a restriction is imposed on 
the intermediate layer of the autoencoder: the in-
termediate layer must be smaller in size than the 
input and output layers. This limitation forces the 
neural network to look for generalizations and cor-
relations in the input data, to "compress" it. Thus, 
the neural network automatically learns to extract 
common features from the input data, which are 
encoded as the values of the neural network con-
nection weights. Hence, while training the network 
on a set of different input images, the neural net-
work can independently learn to recognize lines 
and stripes at different angles.

Most often, autoencoders use cascading to train 
deep (multilayer) networks. Autoencoders are used 
for pre-training a deep network without a supervi-
sor. To achieve this, the layers are trained in turns, 
one by one, starting from the first ones. An addi-

i is in the previous layer, j is in the last layer i is in the previous layer, j is not in the last layer, k is in the next layer

δ j i
i j

E o
w
∂

=
∂

where δ ( ) ( )j j j jt o f net′= − − ⋅     

δ j i
i j

E o
w
∂

=
∂

         where  δ δ ( )j k j k j
k

w f net′= ⋅∑

Table 2. Last layer and not-last layer connection weight modifiers
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tional output layer is connected to each new un-
trained layer prior to training. It complements the 
networks according to autoencoder architecture. 

Next, a set of training samples is “fed” to the in-
put of the network. The weights of the untrained 
layer and the additional layer of the autoencoder 
are tuned using the error backpropagation method. 
The encoder layer is then disabled and a new one 
corresponding to the next untrained network layer 
is created. The same set of training data is fed to the 
input of the network again, but this time the layers 
of the network that have already been trained re-
main unchanged and work as an input for the next 
layer that is being trained. Likewise, training con-
tinues for all layers of the network, except for the 
last ones. The final layers of the network are usu-
ally trained without using an autoencoder, instead, 
using the same error backpropagation method and 
involving labeled data (supervised training).

Deep Learning. Deep Belief Network 
Pre-training 

As already mentioned in section “Deep Neural 
Networks”, at the end of the 20th century it be-
came clear that the method of error backpropa-
gation was not effective enough when the training 
objects were neural networks with a nonlinear acti-
vation function and the number of hidden layers of 
elements exceeded two (such networks, in fact, are 
considered "deep"). 

With the development of computing technology 
and it’s performance growth, it became possible to 
build large-scale neural networks. In practice, it 
turned out that one of two problems would often 
arise during training of deep neural networks by the 
method of error backpropagation: the problems 
of a fading (vanishing) or exploding gradient. The 
essence of these problems is that for layers distant 
from the output layer by 2 or more, the value of the 
gradient becomes insignificantly small (which re-
duces the effect of such learning to zero), or vice 
versa - extremely large, which leads to incorrect 
learning, not to mention the problem of processing 
such large numbers (values of weights) using the 
processors of modern computers.

A neural network's susceptibility to exploding or 
vanishing gradient problems depends largely on the 

properties of the activation functions used. There-
fore, their correct selection is important to prevent 
the described problems. Many solutions have been 
proposed to solve the problems of gradient explo-
sion and vanish. They all have their drawbacks. 
The simplest method of combating these problems 
is the selection of the activation function (instead 
of the classical sigmoidal one). The most famous 
alternative activation functions are:
 ReLU: ( ) max(0, )h x x= . The function is easy 

to calculate and has a derivative equal to either 1 
or 0. It is also believed that this function is used 
in biological neural networks. At the same time, 
the function doesn’t saturate in positive region, 
which makes the gradient more sensitive to dis-
tant layers. The disadvantage of the function is 
the absence of a derivative at zero, which can be 
eliminated by additionally defining the derivative 
at zero on the left or right. There are also modifi-
cations of ReLU.
 Softplus: ( ) ln(1 ).xh x e= +  The smooth, every-

where differentiable analogue of the ReLU func-

Fig. 9. Autoencoder

Fig. 10. Cascade of autoencoders
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tion therefore inherits all its advantages. However, 
this function is more difficult to calculate.

One of the alternative methods of combating the 
shortcomings of the error backpropagation method 
is pre-training the layers of the network separately 
and, then, assambling them into a single deep net-
work. At the same time, it is usually necessary to 
supplement the networks with two or three layers of 
neurons with randomly generated connections and 
re-train these two or three layers by the method of 
error backpropagation. For "pre-training" you can 
use the autoencoders described in section “Auto-
encoders”. The essence of such pre-training is to 
build a cascade network from layers of neurons 
that are trained to extract features from input data. 
Each new layer implies the extraction of more and 
more "deep" features from the features, presented 
to it by the previous layer. A network consisting of 
such layers is usually called "a deep belief network".

One of the popular methods for pre-training a 
deep neural network is pre-training a network based 
on restricted Boltzmann machines. In this case, 
the deep belief network consists of the layers of 
hidden elements taken from restricted Boltzmann 
machines. 

To build a deep belief network, it is necessary to 
train a series of restricted Boltzmann machines in 
cascade: the first network is trained using the origi-
nal input data, and all subsequent ones are trained 
using the signals of the hidden elements of the pre-
vious (already trained) layers. The most optimal 
learning algorithm at the moment is the contrastive 
divergence algorithm proposed by D. Hinton [26]. 
The algorithm uses the Gibbs sampling method to 
organize the gradient descent procedure. The con-
nection weights of the trained RBMs are assigned 
to the corresponding layers of the deep belief net-
work. By adding two or three additional layers of 
neurons with random values of connection weights 
to the deep belief network, and training these layers 
by the method of error backpropagation, we get a 
complete deep neural network.

Conclusion 

In this work, the main paradigms of neural networks 
(and methods of their training) are considered. As 

a result of comparative consideration of these para-
digms, it can be concluded that all of them success-
fully solve the tasks set before them, but today deep 
neural networks are the most effective mechanism 
for solving intellectual practical tasks.

The growing popularity of deep neural networks 
in recent years can be explained by three factors.

Firstly, there has been a significant increase in 
computer performance, including GPU (Graph-
ics Processing Unit) calculation accelerators, 
which makes it possible to train deep neural net-
works much faster and with higher accuracy.

Secondly, a large amount of data has been ac-
cumulated, which is a requirement for the deep 
neural networks training. 

Thirdly, such neural network training methods 
have been developed that allow fast and high-qua-
lity training of networks consisting of a hundred or 
more layers [27], which was previously impossible 
due to the problem of vanishing gradient and over-
training.

The combination of these three factors has led 
to significant progress in deep neural networks 
training and their practical use, which allows deep 
neural networks to take a leading position among 
machine learning methods. 

Neural networks have been successfully applied 
in a wide variety of areas - business, medicine, 
technology, geology, physics, etc.

The contribution value of neural network met-
hods in medicine is getting more and more sig-
nificant. One of the areas where neural networks 
(especially deep neural networks) perform best – 
is the classification task area, which includes the 
diagnosis of diseases, forecasting the dynamics of 
pathologies development, etc.

Recently, neural networks and, especially, deep 
neural networks have decidedly become an inte-
gral part of our lives and are widely used for solv-
ing different tasks and are actively used where 
conventional algorithmic solutions are ineffective 
or even impossible. Among the tasks, the solution 
of which can be attributed to the competence of 
neural networks, are the following: speech and text 
recognition, text analysis, semantic search, con-
textual advertising on the Internet, spam filtering, 
verification of suspicious bank card transactions, 
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security systems and video surveillance, expert 
systems, decision support systems and, even, the 
prediction of stock market prices. The emergence 

of a new promising direction in neural network 
approach, namely, their combination with hybrid 
intelligence is expected.
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КОРОТКИЙ ОГЛЯД ОСНОВНИХ КОНЦЕПЦІЙ 
ШТУЧНИХ НЕЙРОННИХ МЕРЕЖ

Вступ. У роботі розглянуто такі парадигми нейронних мереж (і їх методи навчання та функціонування), як 
персептрон Розенблатта, багатошарові персептрони, мережа радіально-базових функцій, мережа Кохонена, 
мережа Хопфілда, машина Больцмана та глибокі нейронні мережі.

Мета. В результаті розгляду цих парадигм можна зробити висновок, що всі вони  успішно вирішують поставлені 
перед ними завдання, але на сьогодні глибокі нейронні мережі є найефективнішим механізмом для вирішення 
інтелектуальних практичних завдань.

Результати. Зростання популярності глибоких нейронних мереж, що відбувається останніми роками, можна 
пояснити трьома чинниками. По-перше, відбулося суттєве збільшення продуктивності комп'ютерів, у тому числі 
прискорювачів обчислень GPU (Graphics Processing Unit), що дало змогу навчати глибокі нейронні мережі значно 
швидше і з вищою точністю.

По-друге, було накопичено великий обсяг даних, необхідний для навчання глибоких нейронних мереж.
По-третє, було розроблено методи навчання нейронних мереж, що дають змогу швидко та якісно навчати 

мережі, які складаються зі ста і більше шарів, що раніше було неможливо через проблему зникаючого градієнта 
та перенавчання.

Висновки. Поєднання цих трьох чинників спричинило суттєвий прогрес у навчанні глибоких нейронних мереж 
та практичного використання їх, що дало глибоким нейронним мережам змогу посісти позицію лідера серед 
методів машинного навчання.

Ключові слова: штучний інтелект, штучні нейронні мережі, методи машинного навчання, глибокі нейронні мережі.
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