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SUPER FIBONACCI GRACEFUL GRAPHS

AND FIBONACCI CUBES

The popularity of Fibonacci cubes is due fo their wide range of uses. In mathematical chemistry, this concept is used in the study of
hexagonal graphs. In computer science, Fibonacci cubes are interesting from an algorithmic point of view. V. Hsu introduced them
in 1993 to simulate the connections of multiprocessor computer networks. He wanted to get graphs with hypercube properties, the
order of which is not a power of two. Therefore, the problem of embedding other graphs in Fibonacci cubes is of interest.
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Introduction

One of the topical trends in the development of
graph theory is the study of problems associated
with various labeling of graphs. A. Rossa is con-
sidered the founder of the labeling theory, who in
1967, in his work "On certain valuations of the ver-
tices of graph", defined four types of labels as a tool
for decomposing a complete graph into isomorphic
subgraphs. Among them is the g-valuation. S. Go-
lomb in 1972 coined the term "graceful labeling"
for it. "A dynamic survey of graph labeling" made
by D. Gallian, which is annually republished and
updated with the results of new research, contains
brief information on the achievements in various
types of graph labeling, including graceful ones. A
survey on graceful trees 2006 by M. Edwards and
L.Howard provides an in-depth look at this topic.
The continuation of the idea of the gracefulness
of a graph is the case when the labeling is a map-
ping from a set of edges into a set consisting of ele-
ments of an arbitrary sequence. Of interest are the
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structural properties of graphs for which a series of
Fibonacci numbers serves as this sequence. This
article discusses two types of such labeling: grace-
ful super Fibonacci and ®-graceful. The first one
was offered by K.M. Kathiresan and S. Amutha
in 2010. They used the first » Fibonacci numbers
for the labels of the vertices and edges of the n-size
graph. The analysis of publications on this topic
showed that super Fibonacci graceful graphs have a
specific structure. The question arises: how do the
degrees of its vertices affect the size and structure
of this graph?

®-graceful labeling was introduced by B. Bresar
and S. Klavzar in 2006 for partial cubes — isomet-
ric subgraphs of a hypercube. Partial cube topolo-
gies are popular schemes for modeling the connec-
tions of multiprocessor networks. Also, hypercubes
and their subgraphs are being used in coding theo-
ry, mathematical chemistry and play an important
role in the theory of metric graphs [1—7]. One of
the features of the hypercube, which is passed on
to any of its isometric subgraphs, is the efficient
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calculation of the distance between two vertices.
This feature plays an important role in studying the
properties of hypercube subgraphs related to the
Djokovic-Winkler O -relation.

It, in turn, is defined on the set of graph edges
and is an equivalence relation for partial cubes.
This leads to the partition of the set of edges into
®-classes. When you label a partial cube ®-grace-
fully, all edges of the same ©-class get the same
labels, while the labels of edges from different ®-
classes should not be identical. Trees are examples
of partial cubes. For them, each ®-class con-
tains only one edge. Therefore, the concepts of
®-graceful and graceful tree labeling coincide.
B. Bresar and S. Klavzar in the work " ®-grace-
ful labelings of partial cubes" defined types of
®-graceful partial cubes, other than trees.

Among their representatives is the Fibonacci
cube T,. It was introduced by V. Hsu to obtain
graphs with hypercube properties, the order of
which is not a power of two [1]. Structures closely
related to them were studied earlier in [3, 4]. The
first » numbers of the Fibonacci series act as the
labels of the T",, edges in its © -graceful labeling.
The problems of characterization of super Fibo-
nacci graceful and ©-graphs, as well as the con-
struction of the corresponding labeling in general
form, are still remain open.

Formulation of the Problem

By a graph we mean an undirected graph without
loops and multiple edges. The order of a graph is
the number of vertices in it, and its size is the num-
ber of edges. Through V(G), E(G), deg(u) we de-
note the set of vertices, the set of edges, the degree
u of the vertex of the graph G, respectively. Un-
less otherwise indicated, the distance dg(u,v) (or
d(u,v) between the vertices u and v of the graph G
is equal to the length of the shortest path connec-
ting these vertices, i.e. to the number of edges in it.
The diameter of a graph is understood as the largest
of the distances between its vertices. If the distance
between two vertices u and v of the graph is equal
to its diameter, then the shortest path connecting
these vertices is called diametrical, while # and v —
diametrically opposite.

Let B, ={b,b,_|...byb | b; €{0,1}, 1<i<n} the
set of binary tuples (strings) be of length #n. Recall
that the Hamming distance between two tuples of
the same length is equal to the number of positions
at which these tuples are different. A hypercube (or
a Boolean cube, or a n-cube) O, can be viewed as
a graph with 2" vertices from B,. Moreover, two
vertices are adjacent if and only if the Hamming
distance between them is equal to one. Q, is also
defined recursively as follows: Oy =K;, O =K,
and O, =Ky x 0,y

The interval /(u,v) between the vertices u and
v of the graph G is made up of all its vertices lying
on the shortest u,v-path. The median of a triplet
of vertices u, v, w of a graph ('is a vertex belonging
to the set I(u,v)NI(u,w)nI(v,w). A connected
graph G is considered median if each triplet of its
vertices has a single median. A subgraph H of a
connected graph G is called an isometric subgraph
if dy(u,v)=dg;w,v) for any u,veV(H). This
subgraph will be convex if, for any wu,veV(H),
each shortest u,v-path from G lies in H. Isometric
subgraphs of hypercubes are called partial cubes. It
is known that partial cubes are median graphs.

Let a graph G and an injection or bijection f
from ¥ (G)into a finite set L consisting of natu-
ral numbers be given. A function fis called a ver-
tex labeling of graceful type if it induces a function
F*(@v)=|f@) - f()| on the set of edges, where
uv € E(G) . In turn, the function value / * (uv)is
often referred as the label or weight of edge uv. We
denote W'the set of edge weights.

Depending on the requirements for L and W,
various graceful vertex labelings are obtained. Their
representatives are super Fibonacci graceful and
O-graceful labelings. The purpose of this article
is to study new properties of graphs that these labe-
lings allow.

Properties of Super Fibonacci
Graceful Graphs

Let a graph G of size ¢ and its vertex label-
ing f of a graceful type be given. The labeling f is
called super Fibonacci graceful if the following
conditions are met: L = {FO, R, 5 F, .. F, } ;
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Fig. 1. Caterpillar T_with selected vertex x

W= {FI,F2,F3, where F;, — are the
numbers of the Fﬁ‘)Ol’laCCI SCI‘ICS i=12,.
F, =0; the function f is injective, while f *

bijective. A graph that allows such a labe-
ling is called super Fibonacci graceful. This con-
cept K.M. Kathiresan, S. Amutha proposed
for the Fibonacci series, consisting of numbers
F=LF=2F=3F-=5.., and M. Seme-
niuta — for the Fibonacci series, which are formed
by numbers F=1F=1,F=2F=3,.... In
each case, the labels of the vertices and edges G re-
main unchanged, if we abstract from the values F; ,
where i=1,2,...,q. Consequently, all statements
regarding the super Fibonacci graphs gracefulness
for one of the indicated sets of values of the Fibo-
nacci series numbers remain true for the second.

Further on, we will identify the vertices and ed-
ges of the graph with their labels. Theorems 1 and
2 describe the structural properties of super Fibo-
nacci graceful graphs.

Theorem 1. Let G be a connected super Fibo-
nacci graceful graph. Then 1<deg(f;)<4 forany
vertex I, €V(G) ,F, #F, .

Proof. Let G be a connected super Fibonacci
graceful graph. Based on the properties of Fibonac-
ci numbers, with the vertex F, e V(G), Fy # Fy, in
the graph G, only the vertices labeled Fj,_,, F;_;,
Fii, Frip and Fy can be adjacent. To avoid
repeating edge labels, the number of vertices adja-
cent to F; cannot exceed four. If deg(F)=4,
then FjFye E(G). Hence, 1<deg(F,)<4 . The
theorem is proved.

Consider a tree with a selected vertex x shown in
Fig. 1. It belongs to a class of trees called caterpil-
lars. A caterpillar is understood as trees that, after
removing all vertices of degree one, are converted
into apath — the base (or trunk) of the caterpil-
lar. The caterpillar in Fig. 1 denote 7, , and its
trunk — P.

Note that for the tree super Fibonacci graceful
labeling is a bijective function.

Lemma 1. A caterpillar 7, of size n is a super
Fibonacci graceful graph for any odd one ».

Proof. Let 7, has a size n. Since the number of
edges for this caterpillar is odd, then n7=2k-1,
where k=1,2,... . Let us enumerate the vertices
T, as follows. To the vertices of the trunk, starting
with x, we assign the numbers: Fy , Fy_;, Fyis3,
Fy_s ..., F5, I . For the rest of the vertices, we
use labels F5,_5, Fop_ay Foj_g»--n Fy » F5 , placing
them in order of their remoteness from x.

The way of placing labels at the vertices 7y leads
to the fact that all edges receive different labels, and
these labels belong to the set {F, F5. B3, .... Fy_; }
forany k=1,2,.... Therefore, 7, — isa super Fi-
bonacci graceful graph. The lemma is proved.

Consider trees T, , T,,..., T , each of which is
isomorphic to 7. The vertex x; of the tree T,
where i=1,2,...,m — isthe isomorphic image of
the vertex x. Let's construct a tree 7," by identi-
fying all the vertices x, . In this case, it is said that
7" is obtained as a result of a one-point connec-
tion of T, , T,,..., T, . For definiteness, trees T’
that are subgraphs of a tree 7" w1ll be called 1ts
branches, and the common vertex x " for them will
be called the root.

Theorem 2. A tree 7", each branch of which has
a size n, is super Fibonacci graceful, if n — is odd
and m — any natural number.

Proof. Let T, T,,..., T, — are branches T
and root x — is their common vertex. For a
branch 7| of size n=2k-1 , where k=12,...,
we apply the labeling used in Lemma 1. To the ver-
tices of the tree trunk 7, , starting from the vertex
following x, we assign the numbers: Fy;_»,Fai_4,
Fyr—6y...y P54, Fyy. For the rest of the verti-

ces T, use the labels Fak—3> Fagp—s> Fag—7s -
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o B3, P2k, placing them in order of their re-
moteness from x. In a similar way, we label the ver-
tices of the branches T, T,...., T . The performed
labeling 7" is a bijective function from a set of vertices
to a set {Fy.F.F,F,....F,,}. It induces
edge labeling. The set of edge labels will look like
{Fl, 5K, ..., m,,} Hence, 7" — is super Fibo-
nacci graceful tree for any m. The theorem is proved.

Consider a tree T’” and its branches T, where

i=1,2,...,m. Let T be a subgraph T’ that is a
caterpillar with each non-terminal Vertex of degree
three. We form all TI-* by removing  k, edges from
T, where k, is an even number, according to the
following rule:

— at the first step, we remove from 7’ a parr of
vertices that are diametrically opposite to X , and
denote the resulting tree as 7! ; if the number of re-
mote vertices is less then &, go to the second step;

— at the second step, we remove from the tree 7!
a pair of vertices that are diametrically opposite to
x , the resulting tree is denoted as 72;

— we repeat the action of the second step until
the number of removed edges becomes equal ;.

The operation of removing a vertex u of the graph
G =(V,E) consists in excluding the vertex u from
V and all edges incident to u from E.

We denote 7}" thetree obtarned as aresult of ap-
plying the descrlbed rule to lt is a subgraph of
Ty" , inaddition, x eva@™ ) , T —are branches
of Ty v

Corollary. The tree T
graceful for every even k, , where
and for any natural number m.

The validity of the assertion of the corollary is
easy to obtain by applying arguments similar to
those given in the proof of Theorem 2.

We call 7" a complete super Fibonacci tree, and
T, " a super Fibonacci tree, if all branches in
each of them have an odd size.

is super Fibonacci
i=12,....m

O©-Gracious Labeling

We will use the Djokovic-Winkler © relation de-
fined on the set of edges of the graph G. The edges
xy and uv of the graph G are in a relationship©
if d(x,u)+d(y,v)=d(x,v)+d(y,u). P. Winkler

proved that a connected graph G is a partial cube
if and only if G is a bipartite and © is a transitive
relation. Therefore, for a partial cube, © is an
equivalence relation and partitions the set of its
edges into equivalence classes, which are called © -
classes.

If the set of edges of a graph G can be represen-
ted as a disjunct union E(G)=F U F,U...UF;
of pairwise disjoint 1-factors (perfect matchings) of
this graph, then this representation is called 1-fac-
torization of G. A 1-factorization is called square if
the pairwise union of its two 1-factors is a graph, all
connected components of which are cycles of the
length four.

Let G be a partial cube at the n vertices.
B. Bresar and S. Klavzar called a bijection
FV(G)—>{0,1,...n-1}— a O -graceful la-
beling G if all edges in each © -class receive the
same labels, and edges from different © -classes
receive different labels and edge labels are deter-
mined according to the rule: | /(x) = f(»)| foreach
xy € E(G) . A graph that allows labeling fa is called
O -graceful.

We use the decimal representation of the cor-
responding binary numbers p,b, _,...b,b € B, as
labels of the vertices of the hypercube. The rela-
tionship between 1-factorization and hypercube
O -classes is presented in Theorem 3.

Theorem 3. Between the set of 1-factors of the
square 1-factorization of the hypercube Q,(n=2)

and the factor-set of the set E(Q,,) with respect to
equivalence , there is a one-to-one correspondence.

Proof. 0,—isa ©-graceful graph. The num-
ber of its parallel © -classes is #n. A set of different
edge labelsis of the form: {2°,2',...,2"'}. Each
class contains 27! edges.

For any n (n>2 ) there is a square 1-factoriza-
tion @, with I-factors F, where i=1,2,.
Moreover, F, consists of 2” -l edges 1n01dent to
vertices that drffer in position /-1 in their binary
representation. Therefore, all edges of the factor F,
have the same labels, equal to 2'~!. They are calcu-
lated as the modulus of the difference between the
vertex labels We assign to F, a © -class with edge
marks 2" The theorem is proved

Consider the Fibonacci series: /] =1, F5 =2, ...,
F,=F, y+F, . For nz1 of Fibonacci string,
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Fg. 2. Fibonaccicubes I',, at n=1,2,3,4

lengths n — are binary words (or strings) of the

form:
Fn:{bnbn—l "‘bel (S Bn | bi 'bl'+1 = 0,

1<i<n-1}

Note that the set F, consists of all binary strings
of length n not containing two consecutive ones.
By Zeckendorf’s theorem, any natural number
can be uniquely written as a sum of inconsistent
Fibonacci numbers. Let i — be a positive integer
and i<F, -1, denote F(i)=b,b, ...byb €F,.

n
Thus i= 2 b;F;, where F; is the j-th term of
=1

the Fibonjacci sequence. Each Fibonacci number
written as a Fibonacci string contains one only in
the i-th position.

The Fibonaccicube I', ofordern(n=0,1,2,...)
is understood as a graph with a set of vertices ¥V =F
and the property: two of its vertices are adja-
cent if the Hamming distance between them is
equal to one. The Fibonacci cube I, is a sub-
graph of a hypercube O, . I',, is obtained from 0,
by removing all vertices containing at least two
consecutive ones.

B. Bresard and S. Klavzar proved that T, is
O _graceful graph [8]. The factor-set of a set of
E,) with respect to © consists of # ©-classes
of equivalence. Let's designate them ©7,0] ,...,
@} . All edges from ©), have labels equal to F; ,
where i=12,...,n.

38

As known, the Fibonacci cube I', can be ob-
tained using cubes of lower dimension I',_; and
I',_» connected by F,_; edges. This presentation
is called fundamental decomposition of ', . Fig. 2
presents cubes I', for n=1,2,3,4.In T';and T}y
the edges connecting cubes of lower dimensionsare
shown by dotted lines. The labels of the vertices in
the form of Fibonacci strings are also indicated.

B. Kong, S. Zheng and S. Sharma described a
construction that imitates the fundamental de-
composition. Empty sequence g (=A and se-
quence g =0,1 represent graphs Iy and I,
respectively. For n>2, let g ,=0g,_,.10g,_,,
where § means the sequence reverse to g, and
a g is the sequence obtained from g by adding a
line o before each element from g. Thus, the first
sequences g; are:

g o=A

g 1= 09 1

g »=01,00,10

g 3=010,000, 001,101,100

g 4=10100,0101, 0001, 0000, 0010, 1010, 1000, 1001
The sequence g, contains all the vertices T',,.

Moreover, by induction, the consecutive terms in
0g,_, aswell as in 10g, , differ in one posi-
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tion. In addition, the last term Og,_, and the first
term 10g,_, also differ in one position. Based
on the described construction method I, the
statement of Lemma 2 is obvious. It is also easy to
obtain a proof of Lemma 3.

Lemma2. Foreach T',,, wehave ®F =07 Lu @I,
i=1,2,...n—1 and Oy
|®Z| = F,_jedges connecting I',_; and ', _, .

where consists of

Lemma 3. I',, contains only two diametrically
opposite vertices’

Proof. Let a graph I', be given. Consider a
vertex x =b,b,_;...byb €V (L,) at which 5, =0,
b, =bn=1,b,_; =by—i1) ,Where i =2,3,...,n—1
and a verteX y =b,b,_1...b2b €V (T,), Where b,
and bi take opposite values. The Hamming dis-

tance between x and y is the greatest and equals #.
There are only two such verticesin I, and they are
diametrically opposite. The lemma is proved.

The edges of the diametrical chain I',, which
we denote D, , belong to different © -classes.
Since the diametrical chain D, has a length #, it
contains one representative of each class. Let usil-
lustrate with an example I'; and I, the construction
of the corresponding diametrical chains, indicating
the sequence of vertices through which they pass.
With this method of setting D, , we take into ac-

count that each pair of adjacent vertices of the se-
quence is connected by an edge at D,, .

For a graph I, the sequence of chain vertices
is: 0101010,0101000, 0100000, 0000000, 1000000,
1010000,1010100,1010101 .

For a graph I, the sequence of chain vertices
Dy is: 01010101, 01010100, 01010000, 01000000, .
00000000, 10000000, 10100000, 10101000,101010.

Let us write down the sequence of edge labels for
each case in the order of their sequence in the indi-
cated chains. First for T £2, £y, Fg, F7, F5, F3, Fy
then for I'y; K, K, F5, F;, Fg, Fy, Fy, F, . We de-
note D, a sequence of this kind for I',, . There
is not a single diametrical chain between the indi-
cated vertices. However, the result is similar.

We conclude that:
O-classes: F», Fy, Fg, ..., Fop_o. B>, Fop i,
Foj_{s.... Fs, By, Fy set DY forany n=2k+1;
O -classes:

FLoF3 Fsoooos Fog 3. Fop 1 Fop s Fop oo Fs, Fy, S

set D,f for any n =2k, where £k=1,2,... and
FeVvT,), i=12,...,n . Using D,,F it is not dif-
ficult to construct D, , since the values of the labels
of the diametrically opposite vertices are known.

Conclusion

The popularity of Fibonacci cubes is due to their
wide range of uses. In mathematical chemistry, this
concept is used in the study of hexagonal graphs.

In computer science, Fibonacci cubes are inter-
esting from an algorithmic point of view. The prob-
lem of embedding other graphs in Fibonacci cubes
is of interest.

A new class of subgraphs of Fibonacci cubes is
distinguished in the paper. Alternative definitions of
the Fibonacci cube are considered. In one case, it
is a subgraph of a hypercube. The next definition is
related to median graphs. This made it possible to
obtain versatile approaches to the study of properties
of the super Fibonacci graceful graphs and to reveal
the properties inherited from partial cubes.

This article discusses the structural properties of
graphs that allow one to obtain new classes of super
Fibonacci graceful graphs. The connection between
the square 1-factorization of a hypercube and its -
classes is demonstrated.

The fundamental decomposition of the Fibonacci
cube is used to describe its new properties. The range
of applications for the Fibonacci cube is expanding.
Therefore, the continuation of the study of its prop-
erties is an urgent task.

These properties can be used to determine the
structural and numerical invariants of such graphs.
The results obtained can be useful to specialists in
the field of coding theory, theory of parallel comput-
ing, theoretical chemistry, as well as in the study of
interconnection topology.
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CVIIEP ®IBOHAYYI I'PALIIO3HI TPA®U I KYB OIBOHAYYI

Beryn. [TomynsipHicTh Ky6iB Pi6oHavyi OB’ si3aHa 3 iX IMMPOKKMM KOJIOM 3aCTOCYBaHb. Y MaTeMaTUYHIlM XiMii 11e TTOHSITTS
BUKOPUCTOBYETHLCS MPU IOCIiIKEHHI rekcaroHaibHux rpadis. B indopmaTtuii kyou MiGoHauui Likasi 3 airopuTMidyHOT
ToukM 30py. B. Xcy ix BBiB B 1993 pouli 1151 MomenoBaHHS 3’€THAHb 0AraTOMPOIECOPHUX OOUMCITIOBAIBHUX MepeX. BiH
XOTiB OTpUMAaTH Tpacut 3 BIACTUBOCTSIMU TilepKy0a, TIOPSIOK SIKUX He € CTyreHeM ABiiiku. ToMy cTaHOBUTH iHTEpeC Tpo-
OsiemMa BKJIaaeHHs iHIuX rpadiB B Kyou MidoHayui.

Mera 1aHOI CTATTi MOJIITa€ B DOCIIAXEHHI B3a€MO3B’3Ky MixX cyrep PiGoHayui rpalio3HuMu rpadamMu i KybaMu
®i6oHayyi.

Meroau. [1pu 10BeAEHHI TEOPEM BUKOPUCTAHI CTPYKTYPHi BlacTUBOCTI Ky6iB dMiboHauyi, MmeToau teopii rpadis i Te-
opii po3MiTOK.

Pesynsraru. Bunineno Hosuii xiiac miarpadis xy6iB @i6onauui. Po3risiHyTo ansrepHaTUBHI BU3HaYeHHS Kyoa Dibo-
Hayui. B ogHOMY Bunanky — ue nmiarpad rinepkyda. HactynHe BU3HauYeHHs MoB’si3aHe 3 MediaHHKMMU rpadamu. Le oo-
3BOJIMJIO OTPUMATH Pi3HOCTOPOHHI MiIXOIY 10 BUBUEHHS BIacTUBOCTEM cynep PiGoHaudi rpailio3Hux rpadis i BUSBUTH
BJIACTMBOCTI, YCaIKOBaHi BiJl 4aCTKOBUX KyOiB.

Bucnosok. Cyriep diboHauui rpaitio3Hi rpacdu, sik niarpadu kyois @idoHauvi, MaloTh NpUBAOIUBY PEKYPCHUBHY CTPYK-
Typy i TOB’s13aHi 3 HEIO BIACTUBOCTI. 3a JOTIOMOTOIO IIUX BIACTUBOCTEN MOXHA BU3HAYUTH CTPYKTYPHi Ta YMCEITbHI iH-
BapiaHTy Takux rpacdiB. OTpuMaHi pe3ynbTaTé MOXYTh OyT KOPHCHUMU (axiBIsIM B 06J1acTi Teopii KOmXyBaHHS, TE€ODii
napajejbHUX 00UMCAEHb, TEOPETUUYHOT XiMisl, a TAKOX MPW BUBUEHHI TOMOJOTIT MiXKMEpPEXeBUX 3’ €IHAHb.

Karouosi caosa: cinepry6, ky6 Divonauui, cynep idonauui epauyiosna posmimea epag.
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