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THE DABC AND TLBO ALGORITHMS
FOR SOLVE JOB SHOP SCHEDULING PROBLEM

This paper shows use Discrete Artificial Bee Colony (DABC) and Teaching- Learning-Based Optimization (TLBO) algorithms for
solving the job shop scheduling problem (JSSP) in order to minimize makespan (C__value). The Job Shop Scheduling Problem
is one of the most difficult problems as it is classified as an NP-hard one. Stochastic search techniques, such as evolutionary al-
gorithms, are used to find a good solution. Our objective is to estimate efficiency of DABC and TLBO algorithms on many tests of

JSSP problems.
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1. Introduction

The job shop scheduling problem has become a
classic scheduling problem and it is mainly related
to industrial engineering, though it is also required
in other branches. The study of scheduling problem
is carried out taking inputs from various streams like
computer science, operations research, manage-
ment and manufacturing. These problems belong
to the family of NP-hard, in which they cannot be
solved in polynomial time.

Scheduling is assigning a set of tasks on resources
in atime period, taking into account the time, capa-
bility and capacity constraints. Many studies have
been done to solve this problem or to determine the
nearest approach to the solution. Commonly used
scheduling techniques include the following [1] :

= Exact Algorithms (e.g. Branch and Bounds
Methods, Linear Programming, Dynamic Pro-
gramming);

= Approximation Algorithms [(Artificial Intel-
ligence Algorithms (e.g. artificial neural network),
Local Search Algorithms (e.g. greedy randomized

adaptive search procedure), Evolutionary Algorithms
(e.g. genetic algorithm), Swarm Optimization
Algorithms (e.g. bee colony algorithm)].

Hence, a variety of heuristics and metaheuris-
tics procedures such as taboo search, simulated
annealing and genetic algorithm have been applied
to solve these problems and find optimal or near
optimal schedule in a reasonable time [2].

In this paper, the discrete artificial bee colony
algorithm (DABC) and teaching-learning-based
optimization (TLBO) algorithm are proposed for
solving the job shop scheduling problem with the
aim of minimizing makespan (C_ ).

2. Job Shop Scheduling Problem

The task of production scheduling consists in
the temporal planning of the processing of a given
set of orders. The processing of an order corre-
sponds to the production of a particular product.
It is accomplished by the execution of a set of ope-
rations in a predefined sequence on certain re-
sources subject to several constraints. The result
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of scheduling is a schedule showing the temporal
assignment of operations of orders to the re-
sources to be used.

Each operation can be performed by some ma-
chines with different processing times. The difficulty
is to find a good assignment of an operation to a ma-
chine in order to obtain a schedule which minimi-
zes the total elapsed time C . The structure of the
scheduling problem can be described as follows [2].

Consider a set of N jobs {J}, 1 <j< N, and a set
of machines {M,}, 1 < k < M, where M is the total
number of machines existing in the shop. All jobs
are independent of one another.

Each job J/ has an operating sequence, called Gj;
each operating sequence Gj is an ordered series of
operations Ol_j, indicating the position of the opera-
tion in the technological sequence of the job; the
realization of each operation O,y requires a resource,
i.e. amachine selected from a set of machines, {M, }
(for FJISSP problem).

This implying the existence of an assignment
problem: there is a predefined set of processing
times; for a given machine M,, and a given operation
Oy’ the processing time is denoted by P, ,; an ope-
ration which has started runs to completion (non-
preemption condition); each machine can perform
operations one after another (resource constraints).

The time required to complete the whole jobis C__ .

Our objective is to determine the set of comple-
tion times for each operation which minimizes C__ .

The flexible job shop scheduling problem
(FJSSP) is an extended traditional JSSP problem.
It breakthroughs the restriction of unique resources
and allows each operation to be processed by seve-
ral different machines, thus making the FJSSP
problem to correspond with actual production si-
tuation more accurately.

3. Metaheuristics
for Solving JSSP Problem

In this study, a recently developed Discrete Artificial
Bee Colony (DABC) algorithm and Teaching-
Learning-Based Optimization (TLBO) method are
proposed to solve the job shop scheduling problems
to minimize the makespan.

3.1. DABC Algorithm

The classical artificial bee colony (ABC) algorithm
proposed by Dervis Karaboga [3] is one of popula-
tion algorithm often used for constrained optimiza-
tion problems [4-7]. The considered problem is re-
formulated so as to take the form of optimizing two
functions, the objective function and the constraint
violation function [3]. Detailed pseudo-code of the
ABC algorithm is given below [8, 9].

1: Initialize the population of solutions X' :

X={x,,x o (1

29 w0 Xyp wes X

x,=Ib, + rand(0,1)-(ub, - b), )

where: i =1, ..., SN (source number),j=1, ..., DN
(dimension number), /b — lower boundary, ub —
upper boundary;

2: Evaluate the population;

3: cycle=1;

4: repeat;

5: Produce new solutions v, for the employed
bees by using and evaluate them, according to (2.2)
in [2]:

v, =x, + rand(0, 1)-(x,.j - X)s (3)

where k € {1, 2,..., BN} and j € {1, 2,..., DN} are
randomly chosen indexes, k # i;
6: Apply the greedy selection process [10];
7: Calculate the probability values p, for the solu-
tions x; with formula (2.1) in [3]:
fit.
Pi=w 4)

G
D fit,
i=1

where: fit, — fitness function value of i-th solution
(food source);

8: Produce the new solutions 2 for the onlook-
ers from the X, solutions elected depending on p,
and evaluate them;

9: Apply the greedy selection process [10];

10: Determine the abandoned solution for the
scout, if exists, and replace it with a new randomly
produced solution X, according to the equation 2;

11: Memorize the best solution achieved so far;

12: cycle = cycle + 1;

13: go step 4 until cycle = MCN, (MCN — maxi-
mum cycle number).
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INITIAL JOB/OPERATION SEQUENCE
[1o8 [ 2] 2] 2] 2] 2] 3] 1] 2] 3]
loperaTion]| 1| 1 1] 2| 2| 2| 3] 3| 3]

INSERT

[208 [ af 2] s af 2f s[Ta] 2f 3
[operamion] 1| 1 2] 2 2] 2] ] 3] 3]
{AFTER INSERT)

[08 [ 2] af 2[ o] af 2f s 2f s
[operamion] 2| 2] 2] 1| 3] 2] 2] 5] 3]

GROUP-INSERT W |
[os [ ] 2] 3] 1] 2] 3] 1] 2] 3]
[operaTiON] 1| 4] [

{AFTER GROUP-INSERT)
[os [ ] 3[ a] 2] 2] 3] 1] 2] 3]
|

[operamion]| 2] 1| 2] 1| 2[ 2] s 3] 3|
SWAP

[1o8 [ 2] 2] 2] 2] 2 3] 3] 2] 3]
loperamion] 1| 1 2] 3| 2] 2] a&] 3| 3]
(AFTER SWAP)

[o8 [ a] af o af 2 o of 2f 3
loperaTion]| 1| 2 1] 3| 1] 2] 3] 3| 3]

REVERSE —_—
[108 [ 2] 2] 3] a] 2] 3] 1] 2] 3]
operamion| 1| a[ 1 2| 2| o 3] 3| 3

{AFTER REVERSE)
208 [ af af =] o2f 4
[operamion| 1| 2] 1] 1 3] 2] 2] 3] 3

ADJACENT EXCHANGE
[1o8 [ ] 2] 3] 1] 2
[opEraTiON] 2] 2 1 2] 2

|N |
w

AFTER ADJACENT EXCHANGE
[bos [ 1] 2] 3] 1]
[operaTiON] 2 1] 1| 2]

SIS
t |

8]

MACHINE CHANGE

JOB 1 2 3 1 2 3 1 2 3
OPERATION 1 1 1 2 2 2 3 3 3
MACHINE Al Al Al B C| B C| C| D
. A——

{AFTER Substitute machine

MACHINE Data Base

CHANGE) &

JOB 1 2 3 1 2 3 1 2 3
QOPERATION 1 1 1 2 2 2 3 3 3
MACHINE Al A B| B C| B C| C| D

Fig. 1. Mutation strategies for creating new neighboring solution by DABC algorithm

As the basic ABC algorithm was originally de-
signed for continuous function optimization, in
order to make it applicable for solving the problem,
a discrete version of the ABC algorithm (DABC)
is considered. Composite mutation strategies are
proposed to enable the DABC to explore the new
search space and solve the permutation flow shop
scheduling problem. We consider each discrete job
permutation as a food source and apply discrete
operations to generate a new neighborhood food
source (FS) for different bees to make artificial bee
colony algorithm suitable for JSP. Each FS is a per-
mutation of operations.

In order to generate good diversity neighboring
solutions several mutation strategies are proposed
to enable the DABC to solve the JSSP problem
(Figure 1). We use INSERT and SWAP, REVERSE
(INVERSE) and ADJACENT EXCHANGE mu-
tations which are commonly used in DABC [10,
11] and use two additional strategies: GROUP-
INSERT, which acts like INSERT mutation with
possibility to insert group of adjacent operations
and MACHINE CHANGE mutation for FJSSP.

These operations based on [9, 11] are given in
[12] and are illustrated on the Fig. 1.

The control parameters of proposed Discrete
Artificial Bee Colony are: SN — source num-

ber, MITN — maximum improvement trial num-
ber and one typed by a user termination criteria:
MCN — maximum cycle number, computation
time limit or optimal makespan deviation in per-
centage. Except of control parameters, input da-
ta that describes job scheduling problem is loaded
into program: manufacturing program, operation
routing matrix, group-tech machine routing matrix
(for FJISSP), candidate machine list (for FJSSP),
unit processing times matrix and re-tooling times
matrix. Initial population consists of schedule gen-
erated based on a random permutation of opera-
tions (priority rule).

Whenever during employed or onlooker bee
phase a new food source (schedule) is produced,
for each bee new neighboring solutions are gene-
rated using proposed mutations strategies (Figure
1), then new solutions are evaluated, the fitness
function is calculated — the smaller makespan,
the higher value of the fitness function. Then
the original food source (schedule) and a new
schedules (from neighborhood) participate in the
greedy selection process. One local winner with
the highest fitness function value is chosen for
each bee. Whenever scout bee occurs, a new sche-
dule is generated based on a random priority rule
for food source with MITN criteria met. Then the
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best global solution for whole population is memo-
rized, number of cycles increases by one, and ter-
mination criteria value is updated. If the termina-
tion criteria is met, the algorithm stops and the best
found solution is saved and printed.

3.2. TLBO Algorithm

Effective optimization method, based on the pro-
cesses of teaching and learning was proposed by
Rao and Kalyankar for optimization the enginee-
ring design problems [13]. Teaching-learning-ba-
sed optimization (TLBO) population-based me-
taheuristic search algorithm is inspired by the
teaching and learning process in a classroom.

This method works based on effect action of
teacher on students. TLBO relies on generating ini-
tial population of solutions, which is used to move
to the global solution. The population is treated as
a group of students. The whole process is divided
into two main phases: the transfer of knowledge by
the teacher (teaching phase) and the phase of the
exchange of knowledge among students through
interaction with each other (learning phase).
Detailed pseudo-code of the TLBO algorithm is
given below:

1: Initialize the population of solutions X:

X={x,x,, T S A B (5)

x,=Ib,+ rand(0,1) - (ub,- Ib),  (6)

where: i = 1, ..., P (population size),j =1, ..., DN
(dimension number), /b — lower boundary, ub —
upper boundary;

2: Evaluate the population;

3: cycle=1;

4: repeat;

5: Find the best solution which will be defined
as teacher;

6: Teaching phase:

produce new solutions X for all P students in
group by using and evaluate them:

=/Yolaf,j + rand(O,l) ’ (/Yteacher,j_ TF ’ 'xk,j)’ (7)

new, j
where: T, — teaching factor,
T, =round (1 + rand (0,1));
7: Apply the greedy selection process [10];

8: Learning phase: select two random different
students X; and X, where i#/:

=Xo/d,_/ +rand(0,1) - abs(Xl__ X/); (8)

new, j

9: Apply the greedy selection process [10, 12];

10: cycle=cycle+1;

11: go step 4 until cycle=MCN, (MCN — maxi-
mum cycle number)

In [13] were designed some effective metaheuris-
tics to improve TLBO algorithm for effective opti-
mization of more complex problems. Our TLBO
was improved in some of them.

Some different strategies are utilized in a hybrid
way to generate population with certain quality and
diversity. For the machine assignments, the follow-
ing three rules are applied to generate the initial as-
signments.

Rule-1: Random rule. Randomly select a machine
from the candidate machines set for each operation,
and then place it at the position in the machine as-
signment vector.

Rule-2: Global minimum processing time rule [14]

Rule-3: Local minimum processing time rule
[8]. In our TLBO, 20% of individuals are gene-
rated by rule-1, 10% are generated by rule-2 and
rest 60% by rule-3.

As for the operation sequence, the fol-
lowing three rules are applied to initialize the
population.

Rule-4: Random rule. Randomly generate the
sequence of the operations on each machine.

Rule-5:Mosttimeremainingrule[8].Sequen-
ce the jobs in the order of non-increasing re-
maining time, that is, the job with the most re-
maining time will be selected first.

Rule-6: Minimum time remaining rule [8].
Sequence the jobs in the order of increasing re-
maining time, that is, the job with the shortest re-
maining time will be selected first.

Rule-7: Most number of operations remaining
rule [8]. The job with largest remaining operations
unprocessed has a high priority to be selected.

In our TLBO, 10% individuals are generated by
rule-4, other individuals generated 30% for each
rule (rule-35, rule-6, rule-7).

In order to generate good diversity neighboring
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Fig. 2. Procedure of uniform crossover for machine
assignment by TLBO [15]
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Fig. 3. Procedure of MPOX crossover for

operation sequence by TLBO [16]

solutions different exploitation search procedures
to evolve the machine assignment and operation
sequence respectively are used.

For the operation sequence, a modified prece-
dence operation crossover (MPOX) is used [16].

In learning phase an additional parameter a
(between 0% and 100%) is introduced. In each
generation, all the individuals rank from the best
to the worst and top P-a individuals which are
defined the best students; and only this part of
all students will take part in the learning phase.
This imitates that only smart students improve
themselves by interaction. Also, the number of
students is not limited to one student.

Modified TLBO used extra phase local search
which imitates the process that the teacherimproves
himself by enhancing his own knowledge. The lo-
cal search is performed on the teacher for ¢/ times.
Greedy selection is used to update the teacher. Two
local search operators are developed for the solu-
tion, namely local search for machine assignment
and local search for operation sequence.

Local search for machine assignment S, :

1: Generate an integer i = rand(1, Z), where Zis
the total number of operations;

2: Randomly select i positions from the machine
assignment vector of S, ;

3: For each selected position, replace the ma-
chine with a different machine that is randomly
chosen from the candidate machine set to generate
anew solution S, . Then evaluate it.

Local search for operation sequence S, :

1: Randomly select two jobs J, and J,, and record
the positions of the two jobs;

2: Fill J, into the positions of J, from left to right,
and fill J, into the positions of J, to generate a new
solutionS . Evaluate the solution.

The control parameters of proposed TLBO are:
P — size of the population, o — percent of the
best students (solutions), ¢/ — times of local search
(maximum cycle number, computation time limit),
MCN — maximum cycle number, computation ti-
me limit or optimal makespan deviation in per-
centage, L. — times of interactions between students.

Modified TLBO algorithm can be used not only
for JSSP problem but for FJSSP too.

4. Experiment Results

This section describes the computational experi-
ments to evaluate the performance of the proposed
algorithms. The proposed algorithms are tested on
10 job shop scheduling problems and 10 times inde-
pendently. The experiments performed on PC with
processor Intel® Core™ i7-3770 CPU @ 3.40GHz
and RAM: 16GB. The DABC algorithm was coded
in Java and the TLBO algorithm was coded in the
GNU Octave, which could have a little influence
on the differences in recalculation time of the al-
gorithms.

Computational experiment 1
with DABC — fixed control parameters

In this section theoretical JSSP problems by DABC
with SN = 1000, MITN = 750, MCN = 3000 are
investigated. The proposed algorithm is tested on
10 job shop scheduling bench mark problems, out-
comes are given in Table 1 [12].

Computational experiment 2
with DABC — adjusted control parameters

In the experiment, control parameters values were
adjusted for each problem accordingly to formulas
give in [5], but “number of operations” is used in-
stead of fixed value “10”:
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SN =5-n, )
MCN =n-m-o, (10)
MITN =2-n-m, (11)

where: n — number of jobs, m — number of ma-
chines, o — number of operations for a job. The
proposed algorithm is tested on 10 job shop sche-

Table 1. Theoretical JSSPs solved by DABC,
fixed parameters

Performance of DABC algorithm (C__ value)
Optimal Best Deviation Computa-
Problem | yakespan found from the tion time
makespan optimal [s]
makespan, %
FT6 55 55 0 127
FT10 930 967 4 260
FT20 1165 1216 4 220
La02 655 655 0 151
Lal9 842 863 2 233
La2l 1046 1102 5 383
La27 1235 1318 7 481
La30 1355 1404 4 475
La40 1222 1345 10 532
SWV11 2983 3844 29 1074

Table 2. Theoretical JSSPs solved by DABC,
adjusted parameters

duling bench mark problems, outcomes are given
in Table 2 [12].

Computational experiment 1
with TLBO — fixed control parameters

In this section theoretical FSSP problems by
TLBO with P = 400, o = 15%, t/ = 15 times,
L =20 and MCN = 10 times are investigated. The
proposed algorithm is tested on 10 job shop sche-
duling bench mark problems, outcomes are given
in Table 3 [12].

Computational experiment 2
with TLBO — adjusted control parameters

Control parameters values were adjusted for each
problem depend on the size of scheduling problem:
number of jobs # and number of machines m, only
parameter of the best students o is used instead of
fixed value 15%.

P=5n; (12)
tl=n+m; (13)
MCN =n + m; (14)
L=n+m. (15)

The proposed algorithm is tested on 10 job shop
scheduling benchmark problems, outcomes are
given in Table 4 [12].

Table 3. Theoretical JSSPs solved by TLBO,
fixed parameters

Performance of DABC algorithm (C,_value) Performance of DABC algorithm (C_ value)
Optimal Best Deviation Computa- Optimal Average Best found Average
Problem | kespan | found from the tion time Problem best found | makespan | computation
makespan optimal [s] makespan* time* [s]
makespan, %
FT6 55 55 0 0,4 FT6 55 55 55 15
FT10 930 1005 8 4,9 FT10 930 974 948 751,5
FT20 1165 1275 10 4,8 FT20 1165 1240 1204 769,5
La02 655 676 3 0,8 La02 655 671 655 260,3
Lal9 842 885 5 4,9 Lal9 842 879 863 779
La2l 1046 1152 10 13,4 La21 1046 1124 1092 1630,4
La27 1235 1402 14 30 La27 1235 1346 11315 2211
La30 1355 1404 9 30 La30 1355 1409 1291 2818.8
La40 1222 1367 12 53 La40 1222 1362 1326 3402,6
SWV11 2983 3944 32 434 SWV11 2983 3698 3577 15306,6

*Average values of best found makespan — 10 runs for each
problem

*Average values of best found makespan — 10 runs for each
problem
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Results comparison for JSSP test problems

In [17] comparison of SPT, FIFO, and GA taking
into account makespan values and computational
time are included. Only makespan values are com-
pared in this work because of hardware differences.
The results comparison is given in Table 5 (C__va-
lues) and Table 6 (optimal solution deviation).

Table 4. Theoretical JSSPs solved by TLBO,
adjusted parameters

Performance of TLBO algorithm (C_ value)
Problem | Optimal Average | Best found Average
makespan | best found | makespan | computation

makespan*® time* [s]
FT6 55 55 55 8
FT10 930 1022 980 151
FT20 1165 1240 1225 379,6
La02 655 699 686 30,8
Lal9 842 905 894 144,5
La21 1046 1152 1145 746,5
La27 1235 1387 1373 1744
La30 1355 1422 1411 2110,5
La40 1222 1362 1326 3402,6
SWV11 2983 3493 3472 36104,2

*Average values of best found makespan — 10 runs
for each problem

Table 5. Theoretical JSSPs results comparison —
makespan values [12]

Deviation from the optimal makespan

Problem | GA |TLBO —1|TLBO —2|DABC —1|DABC -2
[18] [12] [12] [12] [12]
FT6 57 55 55 55 55

FT10 974 953 980 967 1005
FT20 1198 1204 1225 1216 1275
La02 668 667 686 655 675
Lal9 876 873 984 863 885
La21 1098 1110 1145 1102 1152
La27 1350 1341 1373 1318 1402
La30 1362 1398 1411 1404 1461
La40 1289 1326 1326 1345 1367

SWVI11 | 3330 3577 3472 3844 3944

Computational experiment with TLBO,
DABC, ANN and GA for a real production system

The input data are the matrix of the groups of tech-
nologically interchangeable machines, the matrix
of technological routes, the matrix of operations
with an accuracy of group of technologically in-
terchangeable machines, the matrix of the proces-
sing times 1 i-th of an operation, the matrix of the
processing times of a setup of machines before pro-
ceeding j-th operation and i-th part. The date set
contains 10 parts which need to be processed by 27
machines and 160 operations. The objective is to
minimize C__ value for FJSSP problem (with serial
type production flow).

Analyzing the effectiveness of the algorithms is
a difficult task. For example, in table 7 we can see
that for FJSSP problem (with serial production
flow) ANN [19], GRASP [20], TLBO [12] and

Table 6. Theoretical JSSPs results comparison —
makespan values [12]

Deviation from the optimal makespan, %
Problem GA |TLBO —1|TLBO —2|DABC —1| DABC -2
FT6 4 0 0 0 0
FT10 5 2 5 4 6
FT20 3 3 5 4 9
La02 2 2 ) 0 3
Lal9 4 4 6 2 5
La21l 5 6 9 5 10
La27 9 9 11 7 14
La30 1 3 4 4 8
La40 5 9 9 10 12
SWV11 12 20 16 29 32

Table 7. Values of makespan for a real production system

Algorithms
Prob- ""GA ANN | GRASP | DABC | TLBO
lem [18] [19] [20] [12] [12]
FT6 | 57636 50242,4%  50242,2* 50242,2* 50242,2%

*Average values of best found makespan — 10 runs
for each problem
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DABC [12] algorithms gives better C___values than
the genetic algorithm [18]. But GA [18] was not as
thoroughly tested as was done in case of GRASP,
DABC and TLBO.

Conclusion

This work examined the JSSP and FJSSP prob-
lems. Computational experiments for JSSP test
problems shows that results given by the DABC
with current control parameters values and TLBO
are close to optimum results GA algorithm [18]
for FT6, ..., La27 problems (table 5 and 6). The

TLBO with appropriate parameters setting that
were achieved from the experimental analysis pro-
duced the best-so-far schedule better than TLBO
without adopting parameters settings. Further ex-
periments with DABC and TLBO algorithms for
various termination criteria and different control
parameters , shows TLBO demonstrated better
C, .. values then DABC and worse then GA [18]
for La and SWVI1 problems. Computational ex-
periment shows that results given by the DABC
and TLBO for flexible job shop scheduling prob-
lems (real production systems) generated optimal
C_ values.

REFERENCES

1. Mesghouni, K., Hammadi, S., Borne, P., 2004. “Evolutionary Algorithms for Job Shop Scheduling”. J. Appl. Math.
Comput. Sci., Vol. 14, No. 1, pp. 91—-103.

2. Blazewicz, J., et al., 2007. Handbook on Scheduling; From Theory to Application, Springer, Berlin, Heidelberg, New
York, 280 p.

3. Karaboga, D., Basturk, B., 2007. “Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained
Optimization Problems”, in: P. Melin et al. (eds.), IFSA 2007, LNAI 4529, Springer-Verlag Berlin Heidelberg.
pp. 789—798.

4. Li, J., Pan, Q., Gao, K., 2011. “Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job
shop scheduling problems”, Int. J. Advance Manufacturing Technology, Vol. 55, No 9-12, pp. 1159-1169.

5. Li, J. Pan, Q. Xie, S. Wang, S., 2011. “A Hybrid Artificial Bee Colony Algorithm for Flexible Job Shop Scheduling
Problems”, Int. J. of Computers, Communications & Control, Vol. 6, No 2, pp. 286-296.

6. Onder, E., Ozdemir, M., Yildirim, B.F.,, 2013. “Combinatorial Optimization Using Artificial Bee Colony Algorithm
And Particle Swarm Optimization Supported Genetic Algorithm”, Kafkas University Journal of Economics and
Administrative Sciences Faculty, Vol. 4, Issue 6, pp. 59-70.

7. Yurtkuran, A., Emel, E., 2016. “An Enhanced Artificial Bee Colony Algorithm with Solution Acceptance Rule and
Probabilistic Metasearch”, Computational Intelligence and Neuroscience, Vol. 2016, Article ID 8085953, 13 p.

8. Lei, D., 2010. “A genetic algorithm for flexible job shop scheduling problem with fuzzy processing time”, Int. J. Prod.
Res., Vol. 48, No 10, pp. 2995—-3013.

9. Li, X, Yin, M., 2012. “A discrete artificial bee colony algorithm with composite mutation strategies for permutation flow
shop scheduling problem”, Scientia Iranica, Vol. 19, No 6, pp. 1921—1935.

10. Greedy algorithm, in: Paul E. Black, Dictionary of Algorithms and Data Structures, National Institute of Standards
and Technology, US.

11. Rao, R.V., Savsani, V.J., Vakharia, D.P., 2011. “Teaching-learning-based optimization: a novel method for constrained
mechanical design optimization problems”, Computer-Aided Design, Vol. 43, Issue 3, pp. 303-315.

12. Witkowski, T., Krzyzanowski, P., Vasylishyna, S., 2016. “Comparison of DABC and TLBO Metaheuristics for Solve
Job Shop Scheduling Problem”, 12 International Conference on Natural Computation, Fuzzy Systems and Knowled-
ge Discovery (ICNC-FSKD 2016), 13-15 August, Changsha.

13. Rao, R.V,, Kalyankar, V.D., 2013. “Parameter optimization of modern machining processes using teaching—learning-
based optimization algorithm”, Engineering Applications of Artificial Intelligence, Vol. 26, Issue 1, pp. 524—531.

14. Pezzella, F., Morganti, G., Ciaschetti, G., 2008. “A genetic algorithm for the flexible job-shop scheduling problem”,
Comput. Oper. Res., Vol.35, Issue 10, pp. 3202—3212.

15. Xu, Y., Wang, L., Wang, S.Y., Liu, M., 2015. “An effective teaching-learning based optimization algorithm for the flex-
ible job-shop scheduling problem with fuzzy processing time”, Neurocomputing, Vol.148, pp. 260-268.

16. Zhang, G., Shao, K., Li, P.,Gao, L., 2009. “An effective hybrid particle swarm optimization algorithm for multi-objec-
tive flexible job-shop scheduling problem”, Computers & Industrial Engineering, Vol. 56(4), pp. 1309-1318.

ISSN 2706-8145, Control systems and computers, 2019, N° 5 45



T. Witkowski

17. Kloud, T., Koblasa, E, 2011. “Solving job shop scheduling with the computer simulation”, The International Journal
of Transport & Logistics, 9th Special Issue, pp. 775—785.

18. Witkowski, T., Strojny, G., Antczak, P., 2007. “The Application Of Neural Networks For Flexible Job Shop Problem”.
Int. J. of Factory Automation, Robotics, and Soft Computing, Int. Society for Advanced Research, Palermo, Italy,
Issue 2, pp. 116-121.

19. Witkowski, T., Antczak, A., Antczak, P., 2010. “Comparison of Optimality and Robustness between SA, TS and GRASP
Metaheuristics in FJSP Problem”, Lecture Notes in Computer Science, Springer-Verlag Berlin, Vol. 6215, pp. 319-328.

20. Witkowski, T., Elzway, S., Antczak, A., Antczak, P., 2007. “Representation of Solutions and Genetic Operators for
Flexible Job Shop Problem”, Communications in Computer and Information Science, Advanced Intelligent Compu-
ting Theories and Applications. Springer-Verlag, Berlin Heidelberg , Vol. 2, pp. 256-265.

Taoeyw Bimrxoecvkuil, TOKTOP TEXH. HayK, TIpodecop,
Bapinascbka noJtitexHika,

ITnoma INoxitexniku, 1, 00-661,

Bapmaga, ITosbina

tadeusz.witkowski@pw.edu.pl

3ACTOCYBAHHS AJITOPUTMIB DABC
TA TLBO J10 3AJJAYI INTAHYBAHHA POBOTU LIEXY

Beryn. 3amava (kaseHmapHoro) ruianyBaHHsI poootu nexy (3I1PLL, Job Shop Scheduling Problem — JSSP) € Ki1acMuHOIO
3a;ayero Teopii poskianmiB. BoHa moB’si3aHa, TOJOBHUM YWMHOM, 3 NPOMMCIOBUM BUPOOHMIITBOM, XOua 3HAXOIWTH
3aCTOCYBaHHS i B iHIIMX Tamy3sx. Teopis po3KiamiB 3HAXOOUTHCS Ha TEpexXpecTi TaKUX AMCIUILIIH, K iHhopMaTHKa,
JOCITIKEeHHSI oTiepalliii, yrpaBliHHS Ta BAPOOHMITBO. 3a1adi Teopii po3KJIaaiB y 3aralbHOMY BUMANKy € NP-TIOBHUMU,
TOOTO HE iCHY€E METOYy OTPMMAHHS iX pO3B’ 3Ky 3a MOJIIHOMiaJIbHUI Yac.

JSSP onTuManbHO Npr3HavYa€e KOXHii TEXHOJIOTIUHIl omepallii pecypc Ta oyaToK 4acy BUKOHaHHsI, 11100 MiHiMi3yBaTh
3arajbHy TPUBAJIiCTh BAKOHAHHS. J1J1s BUpillleHHs 1€l mpo6iemu (a0o 7151 BU3HAUEHHST HAliKPaIlloro IMiaXoay) TPOBeIeHO
0araTo AOCIIKEHb.

Y upoMy gochimkeHHi 10 JSSP 3acTOCOBaHO alTOPUTM IHUCKPETHOI ITYyYHOI OmKoanHoi KojoHii (ALLBK, Discrete
Artificial Bee Colony — DABC) Ta MmeTon onTuMmi3allii Ha ocHoBi BukiananHs/HaBuaHHs (OOBH, Teaching- Learning- Based
Optimization — TLBO).

Merta gociizKenHs1 — o1liHka epekTuBHOCTI anroputMmy DABC ta Metony 7L BO Ha 6aratbox TecTax 3aadi rIaHyBaHHS
poOOTH TIEXY.

Metoau. /15 mouryky eeKTUBHOTO pillleHHsI BUKOPUCTOBYIOTHCSI CTOXAaCTMUHI METOIM TIOIIYKY, TaKi sIK €BOJIIOLiHI
QITOPUTMU, 3 SKUMM TOPIBHIOIOTHCS METOAM AUCKPETHOI LITYYHOI OKOJMHOI KOJIOHII Ta OnTMMi3alili Ha OCHOBIi
BUKJIaJaHHS/HaBYaHHSI.

Pe3yasraTu. [1okazaHO BUKOPUCTAHHS aITOPUTMIiB AMCKPETHOI IITYYHOI O/1)KOJIMHOI KOJIOHIT Ta METOLy ONTUMIi3allil Ha
OCHOBI BUKJIalaHHsI/HaBYaHHS U1 OTPMMaHHSI PO3B'sI3Ky 3a/1aui KaJeHIapHOTro TUIaHYBaHHSI 3 METOI0 MiHiMi3zallii yacy
BUKOHaHHA (3HaueHHs C ).

BucnoBku. [IpoBeneHO MOpPIBHSIHHS METOAY AMCKPETHOI IITYYHOI OMXKOJMHOI KOJOHIl Ta ONTMMIi3alii Ha OCHOBIi
BUKJIaJaHHs/HaBuyaHHsA. OOYMCIIOBAaIbHI TECTOBI €KCIEPMMEHTH IMOKAa3ylOTh, IO pe3yabTaTv, oTpumadi 3a DABC i3
3HAYEHHSIMM MTOTOYHUX TTapaMeTpiB ynpaBiiHHsA Ta 7L BO, 6113bKi 10 ONITUMAJbHUX Pe3YJIbTaTiB BilOMOIr0 TeHETUYHOTO
aJTOPUTMY.

ExcniepumenTu 3 anropurmamu DABC ta T'LBO nis pi3HUX IMapaMeTpiB Ta KPUTEPiiB 3yMMHKU MOKa3yIoTh, 110 7L BO
NPOAEMOHCTPYBaB Kpauti 3HaueHHsa C  , Hix DABC, i ripuii, HiX reHeTHUHM I anroput™. OO4MCITIOBATEHUI EKCTIEPUMEHT
MoKasye, 1o pe3yabTati, orpuMani DABCta TLBO nuisi 3afgad njiaHyBaHHSI TIOTOKOBO1 JIiHil (peaibHi BUPOOHUYi CUCTEMM ),
Ny ONTUMAaNbHI 3HaueHHs1 C .

Karouoei caosa: aneopumm ouckpemuoi wimy4Hoi 602coAuHoi KOAOHIT; onmumizayis Ha 0CHO8I UKAAOAHHSA/HABUAHHSA, 3a0a4a
KaneHO0apHoeo nAanysanHs pobomu yexy; meopis po3kaady; 4ac UKOHAHHSL.
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HCITIOJIb3OBAHUE AJITOPUTMOB DABC
1 TLBO B 3AJIAYE INTAHMPOBAHMA PABOTDBI ITEXA

Beenenne. 3anava (kajieHIapHOTO) TuTaHUpoBaHust padboTsl 1iexa (3[1PLL, Job Shop Scheduling Problem — JSSP) — xnaccu-
yecKas 3amaJa Teopuu pacrcannii. OHa cBsi3aHa, TJIaBHBIM 00pa3oM, ¢ TIPOMBIIIIIEHHBIM TIPOU3BOACTBOM, HO HAXOIAUT
TIpUMEHEHNe U B IPYTUX OTpaciisix. Teopust pacTiMcaHWl HAXOMUTCST Ha TePeKPeCcTKe TaKUX NUCLIUIUINH, Kak nH(popma-
THKa, UCCIIEOBAHNE OTepaIlvii, yIipaBJieHUe U MPOU3BOICTBO. 3a1auu TeOPUH PaCIMCaHWI B OOIIeM ciTydae SIBJISTIOTCST
NP-TIOJTHBIMH, T.€. HE CYIIIECTBYET METO/Ia TTOyIeHUST UX PEIIeHUS 3a TIOTMHOMUATBHOE BpEeMsI.

JSSP onTuMaibHO Ha3HAYaeT KaXXIOW TEXHOJOTUYECKOI OTTepaliiy pecypc U Hayajlo BPEeMEHU BBITTOJTHEHUST, YTOOBI
MUHUMU3UPOBATH 00I1Iee BpeMsl BHITIOJTHEHMS. [T pelieHrsI 3Toi Tpo6ieMbl (MU TS OTIpe/ie/IeHUsT HaWIydIiero moj-
XO0J1a) TIPOBENIEHO MHOTO MCCIIEIOBAaHUA.

B arom uccnenoBanuu x JSSP mpuMeHeH aJTOPUTM IUCKPETHON MCKYCCTBeHHOU muenunuHoir komoHuu (AUIIK,
Discrete Artificial Bee Colony — DABC) n MeTon onTUMM3alliy Ha ocHOBe mipernonaBanus/ooydenus (OOI10, Teaching-
Learning- Based Optimization — TLBO).

Ilems uccnenoBanus — oreHka abdexruBHocT anroput™Ma DABC n metona 7L BO Ha MHOTUX TecTax 3a/1auy TUTAHU-
poBaHUs PabOTHI 11eXa.

Mertonpl. /151 moricka 3 HEeKTUBHOTO PEIIeHMST UCTIONB3YIOTCS CTOXaCTUIeCKe METOIBI TIOMCKA, TaKUe KaK dBOJIO-
LIMOHHBIE AJITOPUTMBI, C KOTOPBIMY CPAaBHUBAIOTCSI METOBI TUCKPETHOM NCKYCCTBEHHON IMISTMHON KOJIOHUU Y OTITUMU-
3aIMy Ha OCHOBE TIPETIOaBaHMs1/00yIeHMSI.

Pesyabrarbl. [TokazaHo MCTONIb30BaHME aJITOPUTMOB TIPETIOAaBaHMsI/O0yIeHMS JIJIsT PElIeHus 3a1ad KaJeHIapHOTO
TUTAHUPOBAHMS C KPUTEPMEM MUHUMU3ALMN BDEMEHH BBITIONHEHUA (3HaueHus C ).

BoiBoapl. BeimiosTHeHO cpaBHEHNE METOIOB TUCKPETHOM ITYYHON IMISTMHON KOJIOHU Y ONTUMU3ALIK Ha OCHOBE TIpe-
To1aBaHus/00yueHYsl. BraucInTeIbHbIE TECTOBBIE 9KCIIEPUMEHTHI TTOKA3BIBAIOT, UTO PE3YJIbTaThl, TIOJYIeHHBIE C TTIOMO-
b0 DABC co 3HaYeHUSIMY TeKYIITUX MTapamMeTpoB yrpasieHus U 7L BO, 6;1M3K1 ONTUMAIBHBIM Pe3yIbTaTaM U3BECTHOTO
TeHEeTUIEeCKOTO aJITOPUTMA.

DxcrepuMeHTH ¢ anroputmMamu DABC v TLBO myist pa3HbIX TapaMeTpOB U KPUTEPUEB OCTAHOBKU TIOKA3bIBAIOT, YTO
TLBO nemonctpupyet nyqiune sHadenus C, yem DABC, v XyXe, 4eM TeHETMIECKMIA aIlTOPUTM. BeIMMCINTETbHBIA 9KC-
TIEPUMEHT TIOKa3bIBAET, YTO Pe3yybTarhl, oiaydeHHble DABC v TLBO 1uist 3amaq miiaHUpOBaHUS TIOTOKOBO TUHUM (pe-
abHbIE TIPOU3BOACTBEHHBIE CUCTEMBI), 1AM ONTUMANIbHBIE 3HaYeHus C .

Karoueevie caosa: areopumm OUcCKpemuoil UCKYCCmeeHHOU NYeAUHOU KOAOHUU, ONMUMU3AUUS HA OCHO8e NPenodasanus/o0y-
ueHusl; 3a0a4a KareHo0apHo20 NAAHUPOBAHUsL paOOMbl Uexa, meopust pacnUCaHUll; 6DeMsl GbINOAHEHUS.
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