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ON NEW PROPERTIES

OF GRAPHS WITH MAGIC TYPE LABELING

We have shown the connection between vertex labelings of magic graph and its overgraph. Also, we have introduced binary relation
on the set of all D -distance magic graphs, where D, {0, 1, ...,d}, i =1, 2, ... and proved, that it is equivalence relation. There-
fore, we have explored the properties of the graphs, which are in this relation. Finally, we have offered the algorithm of constructing
r-regular handicap graph G = (V, E) of order n, where n = O(modS), r= 1,3(mod4) and 3 <r<n->5.
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Introduction

The search for the new ways of solving certain prac-
tical and theoretical problems contributed into the
origin of labeling theory. One of those was “mini-
mization of chaos”, which emerged in the middle of
the past century from the field of coding for digital
computers. The next problem was the development
of methods for optimal element distribution of an-
tenna grate in connection the phenomena of inter-
ference; this problem became popular at the end of
1960s. The equivalence between half-graceful graph
labeling and no-remaider measurement device, called
“Golomb’s ruler”, made significant contribution to
solving the problem. The problem of designing radio
antennas led to mathematical task of building a de-
composition of a complete graph into copies, which
are isomorphic to the trees. This problem, known as
Ringel’s hypothesis, was described for the first time
in 1963 by G. Ringel on symposium in Smolenice

[1]. He made a hypothesis that for each positive in-
teger ¢ there is a decomposition of complete graph
K2q+l into 2g+1 subgraphs, each of which is isomor-
phic to the given tree with ¢ edges. To solve this
Ringel’s problem, in 1967, A. Rosa introduced o-, -,
o- and p-valuations of graph in his paper “On certain
valuations of the vertices of graph” [2]. At present,
the term “labeling” is mostly used instead of “valu-
ation”. In 1963, one more type of labeling was pro-
posed by J. Sedljahcek [3] on the same symposium
in Smolenice. J. Sedljahcek extended the theoretical-
digital notion of magic square to magic graphs; he
defined magic graph as a finite connected graph G
with neither loops nor multiple edges for which there
exist real numbers, the edge labels of G, with the fol-
lowing properties: (1) different edges have different
labels, and (2) sum of the labels’ values assigned to
all edges, which are in incidence to the certain vertex,
is the same for all vertices of graph G [3]. B. Stewart
imposed constraints on the set of edge labels and pro-
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posed to use sequential integers; he also called the
edge labeling as supermagic [4]. Currently, there are
various types of magic labelings of a graph. Their
descriptions and results concerning their existence,
construction and enumeration can be found in elec-
tronic journal published by J. Gallian [5].

Broad array of applications explains the popula-
rity of this subject. Labeling is used for graph-model
analysis to solve problems of automatic programme
parallelizing; for studies of extremal properties of
graphs, their decomposition and packaging; to solve
the problems, which appear while radio frequencies’
distribution occurs during the signal communication
network setup; to address the certain questions in
theory of coding and cryptography, etc. In this study,
we describe the vertex labelings of magic type:

1) D -distance magic, which was first introduced
by A. O’Neal and P. Slater in 2011 [6];

2) (a, d)-distance antimagic, which was first in-
troduced by S. Amurugam and N. Kamatchi [7]
in 2012.

Problem definition

Let’s consider the finite undirected graphs with nei-
ther loops nor multiple edges. Let G = (V, E) be a
graphand D < {0, L2,..., d} isaset, where d isthe
diameter of G. D-neighborhood of vertex ve V (G) is
denoted N (v). N (v) isaset of all vertices ue V(G),
which is located on the distance d(u, v) € D from
a vertex v, thus N,(v)={u eV (G):d(u,v)e D}. If
D = {l}, than we obtain (opened) /-neighborhood
N,(v)=N,(v), and if D = {0, [} than it’s closed
[-neighborhood of vertex v with denoting
N,(v) = N]v]. In particular, Nm(v) = N®) is
the (opened) adjacency set of the vertex v and
N (0,1)(v) = N[v]isthe closed adjacency set of the ver-
tex v. Weight w(v) (or wX(v)) of vertex v for labeling
fis calculated as a sum of labels D-neighborhood of
vertex v, thus w(v) = Z f(u), where v e V(G).
ueN, (v)

Definition 1 [6]. A graph G of order 7 is called
D-vertex magic graph or D-distance magic graph,
if there are a bijection f:V(G)—{l, 2, ..., n},
and such constant k£ so for each vertex v € V(G),
w(v) = k. The integer k is called D-distance (or dis-
tance) magic constant of labeling f.

If D = {1}, then labeling f of graph G is
called distance magic or X-labeling, and if
D ={0, 1} — then fis called X'-labeling. Also, the

term «/-vertex magic» labeling is used, if the graph Gis
D-distance magic graph and D = {[}, where 0 < /< d.
Itis known, if the graph G of order n doesn’t con-
tain isolated vertices and is a distance magic graph
with labeling f and magic constant k, then com-

plement G of the vertices’ weight is denoted with

> f=n(n+1)/2—k-f(u), and
veN (u)
these form arithmetic progression with the first

member a=n(n+ 1) /2 — k — n and the difference
d = 1. These findings prompted .S. Amurugam and
N. Kamatchi to introduce new type of distance la-
beling, described into definition 2.

Definition 2 [7]. (a, d)-distance antimagic labe-
ling of a graph G of order nisa bijection f: (G)—>{1,
2, ..., n} with a property that set of all vertex weights
form arithmetic progression a, a + d, a + 2d, ...
..., a + (n —1)d with first member a and difference
d, where a, d are fixed nonnegative integers, a > 1,
d > 0. A graph that admits the labeling is called
(a, d)-distance antimagic graph.

Definition 3 [8].The (a, d)-distance antimagic
labeling f of a graph G = (V, E) of order n is called
balanced distance d-antimagic (or d-handicap)
labeling, while flu) = i and the sequence of the
weights w/(ul), w/(uz), e w/(un), of all vertices forms
the increasing arithmetic progression with differ-
ence d, where d>0, u, u,, ..., u eV(G) [14]. When
d = 1, we are taking about handicap distance anti-
magic labeling or handicap labeling, in short, and
the corresponding graph is called handicap graph.

The aim of this paper is to study the new graph
properties that admit distance magic and antimagic
labelings, as well as to design an algorithm of con-
structing a r-regular handicap graph G = (V, FE)
of order n, when n = 0(mod8), = 1,3(mod4) and
3<r<n-5.

formula

New properties
of D-distance magic graphs

It is convenient to deal with matrix representa-
tions of labeling graph rather than with graph it-
self. Labeling matrices are described in references
[6, 9—12]. The authors of the study [6] used matrix
analysis to solve the problem of existence D-dis-
tance magic labeling of (D, r)-regular graph. The
results in regards to relation between closed dis-
tance magic labeling graph and its spectrum are
described in study [10]. In this section, we continue
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the studies of D-distance magic graphs properties,
described in [12].

Square matrix A —(aD ) of order n is D-dis-
tance (or distance) matrlx of graph G of order n,
while aDl—l — if and only if — when d(u, u)eD
where u,ueV(G), 1<i, j<n. In other cases, when
d(u, u)e b then a? ;= 0.

Every matrix 4, where 0¢ D, and every matrix
A, — E, where OeD of graph G of order n, are ad-
jacency matrices of the given graph G, of order n,
which is the D-overgraph of graph G. Let us prove
that there is the relation between labeling of graph
G, which does not have isolated vertices and its
D-overgraph.

Theorem 1. If vertex labeling f of graph G is D-
distance magic with a magic constant k, then for
D-overgraph of G, bijection f generates: i) distance
magic labeling if 0 ¢ D; ii) (k — n, 1)-distance anti-
magic labeling if 0 € D.

Proof. Let us define {u, u,, ..., u } as a set of ver-
tices of graph G of order n. Suppose bijection f:
G)—>{1, 2, ..., n} is D-distance magic labeling of
graph G. There is labeling matrix X = (f{u,), f(u,),

.»flu )", which is permutation of numbers 1, 2,...
., n, and complies with equation: A X = kI, where
k is a magic constant of labeling f, /= (11... )7
is column matrix, every element of which equals 1.

If 0 ¢ D, then D-distance matrix 4, of graph G
is a matrix adjacency of D-overgraph of G,. Thus,
bijection fis the distance magic labeling of G .

Suppose 0 € D. Then A = A, — E is adjacency

k= (u)
matrix of G,. With A, X = k get Ax =| ¥~/ ()

k—f(u,)
Thus, bijection fis (k — n, 1)-distance antimagic

labeling of G .
The theorem has been proved.
Let us remind definition of (D, r)-regular graph.

Definition 4 [6]. Graph G of order 7 is called
(D, r)-regular, ifforany vertex v, € ¥(G) and for every

i=1,2,...,n, equation Zaf =ristrue,when(Q¢ D,
n Jj=1
and equation Y a; =r+1istrue, when 0 € D, where
Jj=1
= (a;.) ) is distance matrix of graph G, thus all
D -neighborhood of vertices get the same strength.
We use the results of Theorem 1 to find the mag-
ic constant k of (D, r)-regular D-distance magic

graph. For this we prove the following corollary.

Although it is possible to obtain values k di-rectly
from the definitions 1 and 4.

Corollary. If G is (D, r)-regular D-distance
magic graph of order » with magic constant &,

then k = (2 )when OgDand k= %
when 0eD.

Proof. If Gis (D, r)-regular D-distance magic

graph of order n, then overgraph G is r-regular. For
r(n+1)

r-regular distance magic graph there is k =

[9]. This fact and theorem 1 proves that the corol-
lary is correct.

Let0 € Dand {u,, u,, ..., u,} be the set of ver-
tices of the graph G. According to theorem 1,
r-regular overgraph G, of graph G will be (k - n, 1)-

distance antimagic. Let us determine the sum of
. . . < ru(n+1)

the weights of its vertices: ZW(H,-) =, o

Zw(u) n— n(n+1) (r+D(n+1) '

2
The corollary has been proved.

Every labeled graph G corresponds to distance
matrix 4,. The opposite statement is false. Two dis-
tance matnces A4, ,and A of corresponding graphs G
and H of order n are 51m11ar if there is the permuta-
tion matrix P with the property that 4, =P A, P.
Since the permutation of similarity is an equrva—
lence relation, then the set of all distance matrices
is divided into classes of equivalence. In this case,
we will say that 4, and 4,, belong to one class of
the similar matrlces so 4, ~ A . Graphs of same
order with the s1m11ar dlstance matrlces are called
distance similar [12]. The distance similar graphs
G and H that allows D -, D -distance magic labe-
ling are called magic distance similar [12]. Set of all
D-distance magic graphs is denoted as M, where
D.c{0,1,2,..,d},i=1,2, ... Letbinary relation
R c M x M. The relation of pair of graphs (G, H) to
R we denote as G; H.

Lemma 1. Relation R on the set M of all D-dis-
tance magic graphs, where D, < {0, 1, 2, ..., d},
i=1,2,...,is equivalence relation, which possesses
the following properties:

(1) reflexive: GE G;
(2) symmetrical: G~ H leads to H 7 G;
(3) transitive: G H and H ; Q leads to G~0.

Proof. Execution of the reflexivity property is
obvious.

i=1
. Thus, k =
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Suppose G and H are distance similar graphs of
order n. It is known, graph G is D -distance magic,
if and only if, when H is D,-distance magic graph
[12]. So, the symmetric property is true.

Suppose, the graphs G, H and Q of same order have
corresponding D -, D,-, D,-distance magic labeling
and corresponding distance matrices 4, 4,, 4.
This leads to the following: if G;H and H = 0, then
Ap~Ap and 4, ~ 4, So, 4, ~ Ay, thus G; 0. The

lemma has been proved.

Let us divide above described set M into subsets
M, M, ., MsoGeMandHeM(G=12,.

s) 1f and only if, when G, H are maglc dlstance
51m11ar graphs. Obviously, that set M is the disjoining
unionofsets M|, M, ..., M_, which do not cross pair-
wise and generate the set M/R of classes of equiva-
lence relation R ¢ M x M. As it is well known, M/R
is called factor set M. Given the lemma 1 and re-
sults,obtainedin[9,11,12],wecanstate,thatforeach
graph G M (=1, 2, ...,5) magic constant equals
the same number.

Lemma 2. Suppose G and H are D,-, D,-distance
magic graphs, respectively. If 0 ¢ D, and 0 € D,, or
0 €D, and 0 ¢D,, then G and H belong to the dif-
ferent equivalence classes of factor set M/R.

Proof. Suppose Gand Hare D -, D,-distance magic
graphs with both 0 ¢ D, and 0 € D,. Distance matrix
ADl is matrix of adjacency overgraph G, . of graph G,
and 4,= A4, — E is the matric of adjacency overgraph
H , of graph H. Let us assume that G; H. So, distance
matrices 4, , and A are similar, and there is permuta-
tion matrix P for Wthh equation 4, = =P (4 +E)P
or 4, —E=P'A4,P is true. This means that eve-
ry element of the main diagonal of matrix 4, p — E
equals —1. Hence, the execution of the last equation
is impossible. That allows us to conclude that the as-
sumption is wrong, so G'and H belong to the different
equivalence classes of factor set M/R.

Same approach can be used in case of 0 € D and
0 ¢ D,. The lemma has been proved.

It is known that graphs appear isomorphic, then
and only then, when their adjacency matrices can
be obtained one from another by similar permuta-
tions of rows and columns, thus adjacency matrices
of isomorphic graphs are similar. We can use this
fact to prove the validity of theorem 2.

Theorem2. IfG = H ,thentheirrespective overgraphs
Gp, and H, are isomorphic, meaning G, =H,,

Proof. Let us assume that G; H. Then graphs G
and H possess D, -, D,-magic labelings and their
matrices 4, Ay, are 51mllar it means that there is
such a permutatlon matrix P, when Ap, = P" A, P.

1) Suppose 0 ¢ D, and 0¢ D, . Since AD1 and
A p, are adjacency matrices of respective over-
graphs GD1 and HD2 ,thenG, =H,, .

2)SupposeO e D and0 € D, Matrices4, = 4, — E
and 4,= A4, — E are adjacency matrices of respec-
tive overgraphs G, ,and H, . As ADl and ADz are simi-
lar, then 4, + E=P (4, +E)P < A4,=P'4P . So,
GD] ~H Dy

3)If0 gD and 0eD,, or 0 €D, and 0 ¢D,, then
according to lemma 2, graphs G and H belong to
the different equivalence classes of factor set M/R;
this means they are not magic distance similar.

The theorem has been proved.

As well known, if graphs G, and G, are isomor-
phic and G is subgraph in G, then G, has subgraph
that is isomorphic to G. Given this fact and theo-
rem 2, we will get the following corollary.

Corollary. If GD1 and H, are isomorphic over-
graphs respective magic distance similar graphs G
and H, then there are such graphs H*c G, and
G*cH,thusG=G* and H = H *.

Proof. Let G, =(V},E)) and H), =(V,,E,) are
isomorphic overgraphs corresponding magic dis-
tance similar graphs G = (V,E; ) and H = (V}, E,).
Suppose E, = EUE*, where each edge with E
is isomorphic image of the respective edge from
the set E,. Consider graph H* = (V;,E*)= Gp, —E,
where G, — E is the operation of sequential remo-
val of all edges that belong to set E. Graph H" is
spanning subgraph of the graph GDl, and H = H *.
Following this logic, get G = G *. The corollary has
been proved.

Construction algorithm

of the r-regular handicap
graph of order n = 0(mod38)
with r = 1,3(mod %)

One of the types of vertex antimagic labelings is the
handicap labeling, introduced by T. Kovarova in
2016. The appearance of the handicap graphs was
encouraged by planning incomplete round tourna-
ment. The review of results obtained from vertex
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magic labelings, which are used as mathematical
models in problems regarding schedules’ setup for
incomplete tourmanents, is presented in [13].

We remind that 1-factorization of graph G is a set
® of 1-factors of the graph, if each edge of graph G
corresponds to one and only one factor from @. In
turn, 1-factor of graph G is its 1-regular spanning
subgraph.

Let us consider the problem of constructing
the r-regular handicap graph G of order n, where
n=0(mod8), r=1,3(mod4)and3<r<n—5. For
its solving in [14, 15], constructive 3-step methods
were used. The first and second steps are in connec-
tion with identifying three 1-factors, which meet
the certain requirements, and for execution of the
3d step, the so-called “bubble” structure is intro-
duced. Authors of paper [13] modified this method
by eliminating the «bubble-graph» construction
in the 3d step. Below, we will show the algorithm
of graph G construction based on the method, de-
scribed in [13]. Constructing G was simplified to
the process of finding its 1-factorization. First, we
will introduce some denotations.

Let n = 8k, keN. Vertices of graph G = (V,
E), we will denote u, . . Since r is less
than three and r=1 3(mod 4), then let G be such
r-regular graph, which has r = 2s + 3. With the
bijection f: (G) — {I, 2, ..., n}, with is a vertex
labeling f of G we will identify the vertex with its
label, then flu) = f(i). We will mean the number
li—j| as the distance between two vertices i and j.
In case of adjacency of these vertices, let us con-
sider the number |i—j| to be the length of the edge.
Constructing graph G is realized with the help of
2s + 3 graphs F, F,, ..., F, ., each of which is
I-factor of graph G with edges of a given length.
Lettr=4,6, ..., 2s + 2. For constructing 2-factors

2k

F UF;H U

i=1 e .

image of cycle C,, we will introduce matrix of cy-
clesC=|[C,C,, ..., C,]. For every vertex i € V(G)
we introduce the certain characteristic — weight
of vertex w(i) so that G is distance magic graph,
when w(i) = const and G is handicap graph, when
w(i) = const + i.

«HANDICAP» algorithm (constructing 2s + 3-re-
gular handicap graph of order n = 0(mod 8)).

The search begins from the empty graph G =
=V, E), where V ={1, 2, ..., n}, E =&. As input
an integer array (1, 2, ..., n) and matrix C = [C,,

C,, where every C, is an isomorphic

C,, ..., C, ] are used, where C, = (0, 0, 0, 0) for any-
one 1 <j<2k.

1. [Construct 1-factor F,] For 1 <i<4k. we cal-
culate j = 4k + i. Thus, (i, j) € E(F)). In case of
constructed 1-factor F,, go to step 2.

2. [Construct 1- factor F)] Fort =1, 2, ..., 4k,
we calculate i =2t -1,/ = 2t. So, (i,)) € E(F) . If
1-factor F, was constructed, go to step 3.

3. [Construct 1-factor F] For ¢ =1, 2, ..., k, we
calculate i, =2t — 1,1, =21,j, =4k —i andj, = 4k +
+2—1i.Thus (i,j), (i,,/,) € E(F,).

For t = 2k +1, 2k + 2, ..., 3k we calculate
i =2t—1,0,=2t,j,=12k-i,j,= 12k + 2—i.We
have (i, /), (i, J,) € E(F)).

In case of constructed 1-factor of F;, go to step 4.

4. [Construct 2-factors F, U F,,|, Where t =4,
6,..,25+2].

4.1. [Find dividers of integer 4k] For 2 <1< 4k,
if 4k =0(mod /) , then go to step 4.2, otherwise in-
crease the value /into 1.

4.2. [Construct cycles]. For 1 <i, <4k, we calcu-
late i, =i +1,j,=8k+1—i,j,=8k+1—-i,.We
get C' = (i, i), J, J,). Gotostep 4.3.

4.3. [Construct F, UF,,]. For 1<i<2k and
C =, iz*,jl*jz*) e C,ifC.=(0,0,0,0) € C, then
Cc.=C ‘e C otherwise we have to compare C andC'.

Ifl ¢ll,ll¢12, ]ij],llijz, l¢1],12¢12, 2:&]1,

127&]2 ’-]1 # 11 ’Jl # lz > -]l 7&]1 ’Jl ifz ’Jzi 11 ’Jzi lz >
Jy#2JJ, %), , thenC’, C, are different connection
components F, V£, iC, =C'eCelse C ‘e C.Go
to step 4.2.

If a matrix C = [C|, C,, ..., C, ] was found, then
all variants of 2-factors of type F, U F,,, were taken.
Go to step 4.1, in the other case — to step 5.

5. We derive the resulting graph G=F U F, U
U...UF s

Let us evaluate the constructing computational
cost of 2s + 3-regular handicap graph of order n.
Construction labour output of the ﬁrst three 1-fac-
tors F, F,, F,is denoted by value G)(n /2). Labour
output of finding 2-factors F, U F,,,, when t =4,
6, ..., 2s + 2 is limited by value ®(n /2). So, we
got the <cHANDICAP» algorithm labour output as-
sesment in the form of @(n*/2).

For algorithm validity we will prove such theorems.

Theorem 3. The complex 1-factor F, F,, ..., F, |

is built by 1-factorization (2s + 3)-regular graph
G=(V, E).
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Proof. We have to prove, that £, NE, =J for
any pair of I-factors F, = (V, E), F (V E) of
graph G=F UF,U...UF, when i#]j "and
1<i, j<2s+3.

The distance between every pair of adjacent ver-
tices of 1-factor F, equals 4k, F, —1, F, — 2 or 6, or
..,ordk —6,0r4k —2, F,—3and 5, or, 11, or 13,

,or8k—13,or8k — 11, 0r8k — 5, or 8k — 3, etc.
So,E\NE, =0, E,NE, =3, E, NE; = forany
i#j,wherei=1,2,3,j=5,7,..,2s+ 3. Similarly,
ENE, =9, E,NE, @andEmE =, for
al'ly1¢]Whel'l4<l ]<25+3

We now only have to determine whether F, has
common edges with 1-factors F, forj=4,6, 8

., 25+ 2. In F, there are four edges with dlstance 2
(2k— 1,2k + 1) 2k, 2k +2),(6k—1,6k+ 1), (6k,
6k + 2). The vertices {1, 2, ..., 2k} ofgraph F, UF;
belong to k of its different components, the vertices
{2k + 1, 2k + 2, ..., 4k} of graph F, U F; belong to
other k of different components, so each edge from
(2k—1,2k +1), 2k, 2k +2) doesn’t belong to F,UF..
The same conclusion we do for edges (6k — 1, 6k +
+1), (6k, 6k + 2). Thus, E; N E, =. Similar lo-
gics leads to proving the fact that £ N E, = for
anyj=06,8, ..., 2s + 2. Theorem has been’ proved.

Theorem 4. Graph G=FUF,U...UF, ; of
order n = 8k is (2s + 3)—regular handicap graph
with w(i) = (8k + 1)(s + 1) + i, where i =1, 2, ...,
8kand F, F,, ..., F, , , are l1-factorization of G.

Proof. For 1-factor F, every its vertex has
weight w(i) =4k +i,wheni=1, 2, ..., 4kand w(i) =
=—dk+i,wheni=4k+1,4k+2,...,8k.Since F, U F;
is a disconnected graph each component of which
is isomorphic to cycle C,, then a weight of any
its vertex i, where i = 1, 2, ..., 8k, equals w(i) =
= 4k + 1. According to construction F, U F;, the
weight of every its vertex i, where i = 1, 2, ...,
8k, equals w(i) = 8k + 1. For all following s — 1 of
2-factors we get w(i) = 8k + 1 for any vertex i. Thus,
w(i) = (4k +i)+ (4k +1)+ sBk +1) = Bk + 1) (s +1)+4,
wherei=1, 2,...,8k andG=F UF, U...UF,
is a handicap graph. Theorem has been proved.

As the example, we will check the execution of
algorithm using 9-regular graph G of order n = 8k,

s+32
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where k= 4. According to the algorithm, on the first
step, we get I1-factor F: (1, 17), (2, 18), (3, 19),...

., (16,32). On the second step we construct 1- fac-
tor F): (1, 2),(3,4), (5, 6), ..., (31,32).

1-factor F, consists of edges (1, 15), (2, 16),
(3, 13), (4, 14), (5, 11), (6, 12), (7, 9), (8, 10),
(17, 31), (18, 32), (19, 29), (20, 30), (21, 27),
(22, 28), (23, 25), (24, 26).

The following step is associated with the
construction of 2-factors F, UF;, F,UF,
F, UF, when the weight of each vertex is equal
8k +1=233.

2-factor F, U F; consists of edges (1, 3, 32, 30),
(2, 4, 31, 29), (5, 7, 28, 26), (6, 8, 27, 25),
9, 11, 24, 22), (10, 12, 23, 21), (13, 15, 20, 18),
(14, 16, 19, 17).

2-factor Fy U F; consists of edges (1, 5, 32, 28),
2, 6, 31, 27), (3, 7, 30, 26), (4, 8, 29, 25),
(9, 13, 24, 20), (10, 14, 23, 19), (11, 15, 22, 18),
(12, 16, 21, 17).

2-factor Iy U F, consists of edges (1, 9, 32, 24),
(2, 10, 31, 23), (3, 11, 30, 22), (4, 12, 29, 21),
(5, 13, 28, 20), (6, 14, 27, 19), (7, 15, 26, 18),
(8,16, 25, 17).

As the result, we get 9-regular handicap graph

9
G= UE. The weight of its vertices equals w(i) =

i=1
=132 +i, wherei e {1, 2, ..., 8k}.

Conclusion

In this research, the connection between vertex
labeling of magic graph and its overgraph is iden-
tified. Also, the equivalence relation on the set of
all D; -distance magic graphs is described as well
as the properties of the graphs are studied, which
are in this relation. In addition, the problem of
constructing r-regular handicap graph of order # is
solved, where n = O(mod 8), » = 1,3(mod 4) and
3 <r< n—35. Finally, the construction algorithm of
such graphs is developed. The research results are
useful for the further development of the subject
and broaden the usage of graphs with magic type
labelings.
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ITPO HOBI BJIACTUBOCTI T'PA®IB 3 PO3MITKAMMW MATTYHOI'O TUITY

Beryn. B maniit craTTi mOCTimKYIOThCSI BIACTUBOCTI rpadiB 3 BEpIIMHHUMHU PO3MITKAMU MAaridyHOTO THUITY, a caMe 3
D-nmucraHIiiHOIO MariyHoto, Briepiie 3anpornoHoBaHoo A. O’Hinowm i I1. Caeiitepom B 2011 p. Ta 3 (a, d)-AUCTaHIIITHOIO
aHTiMariuHoto, BBeaeHowo y 2012 p. C. ApymyramowM i H. Kamaui. Pe3ynsraTu 111010 BupillieHHS 3a1a4 icHyBaHHs, TT00y-
TTOBH i TepeTiKy ISl pi3HUX BepCiii po3MiTOK TpadiB MOXXKHA 3HAWTH B eJIEKTPOHHOMY XypHaui A dynamic survey of graph
labeling nin penakuieto 1. TammiaHa.

Mera cTaTTi — OziepKaTH HOBI BIACTUBOCTI TpadiB, 110 AOMMyCKAIOTh TUCTAHIIIHI MariyHi Ta aHTUMArigyHi PO3MiTKH,
a TaKOX PO3POOMTHU aJTOPUTM TOOYIOBU F-peryisipHOro raHaukan rpada G = (V, E) mopsaaky n, ne n = 0(mod 8),
r=1,3(mod4)i3 < r<mn->5.

Metomu. BukoprcraHo MmeTonu Teopii rpadis, Teopii MHOXWH, MAaTPUIHOTO aHATi3y MPY JOCiIKEHHI BIaCTUBOCTEM
rpadiB, sIKi BOJIOIiIOTh PO3MITKaMu MariyHoro Tuiry. [1pu po3po0iri aaroputMy modyaoBy peryIsipHOro TaHIWKaI rpada
3alisTHi METOAM Teopii po3KIIadiB rpadiB Ta TEOPii aITOPUTMIB.

Pesyabramu. [1poBeneHo nocmimKeHHs BIaCTUBOCTE D-MMCTaHIIIMHIX MariYHUX rpadiB i ToKa3aHo, SKIIIO BEpIIMHHA
posMitka f rpada G € D-IucTaHuiiiHO0 MariyHow, To st D-Haarpada G, Giekuis f IOpoIKye TUCTaHLIHHY MaridHy
posmitky ipu 0 ¢ D i (k—n, 1)-aucTanuiiiny aHTMMariuyHy po3mitky npu 0 € D. Ha mHoxuni M Beix D-aucTaHUiiHuX
MariyHux rpadis, ae i=1, 2, ..., BBeaeHo OiHapHe BimHOIIeHHSI R < M x M. 3 11b0TO MPUBOY OJCPKAHO PSIT PE3yIbTaTiB:

1) R € BigHOIIIEHHSIM €KBiBaJICHTHOCTI Ha M

2) axmo G i H € D,-, D,-nucranuiiinumu MariynuMu rpadamu, sianosinnoi0 ¢ D, 0 € D,a6o0 € D,,0 ¢ D,, 10
G i H nanexarp 10 pi3HUX KJIACiB €KBiBaJICHTHOCTI (pakTOp MHOXUHU M/R;
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3) gkuio GR~H , TO iX BiIMOBiIHiI Haarpadu GDl i H Dy i3oMopdHi;

4) sKkio GD1 i H p, € i30MOpdHUMHU HaarpapaMy BIIIOBIIHAX MAari4HUX AMCTAHLIAHO-NIoAIOHKX rpadis G i H, TO
ichytors Taxi rpadun H* < Gp, i, G*c Hp,,mo G=G*i H=H™*.

3anponoHOBaHO aIrOPUTM MOOYAOBU /-PErylsapHOro raHaukan rpada G =(V,E) nopaiky n, ne n= 0(mod 8),
r=1,3(mod 4)i3 <r<n— 35, HaBeneHa OLliHKA 1Or0 TPYAOMiCTKOCTi.

BuchoBok. BctaHOB/IEHO 3B’S130K MixK BEPIIMHHUMMU PO3MIiTKaMU MariyHoro Tuiy rpaga ta iioro Haarpada. OaepkaHo
OIUC BiIHOIIEHHS €KBiBAJIEHTHOCTI Ha MHOXWUHI BCiX D -IMCTaHUIAHMX Mariynux rpais i JOCITIIXEHO BIACTUBOCTI
rpadiB, 110 3HAXOASITHCS B LIbOMY BigHOILLIEHHi. Pe3ynbratu HOCHIiIKEHHSI KOPUCHI [JIs1 TTOAAJBbIIOrO PO3BUTKY daHOI
TEMATUKMU i PO3LIMPIOIOTH KOJIO 3aCTOCYBaHb rpadiB 3 po3MiTKaMy MariyHOro TUITY.

Karouoei caoea: epagh, D-oucmanyiiina maeiuna poamimka, (a, d)-ducmanuyiiina aumumaziyna poamimka, 2aHOuKan posmima,
D-0ducmanuiiina mampuuys, 8ioHouleHHs ekéiearenmuocmi, 1-gpakmop.
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O HOBBIX CBOMCTBAX I'PA®OB C PASMETKAMY MATMTYECKOT'O TUTIA

Beenenne. B nanHoii cTathe mccienyoTcs cBOCTBa TpadoB € BEPIIMHHBIMU pa3MeTKaMi Marndeckoro THUIa, a UMEH-
HO ¢ D-IMCTaHIMOHHON Marm4eckoii, BrepBble npemtoxeHHoi A. O’Humom u I1. Cnaiitepom B 2011 1, u ¢ (a, d)-
IVCTAaHIIMOHHON aHTUMarnueckoii, BBeneHHou B 2012 . C. Apymyramom u H. Kamauu. Pe3ynsraTsl 1o penieHuio 3amaq
CYIIIECTBOBAHMSI, TIOCTPOSHUSI U TIEPEUMCIICHUS AJIST Pa3IMIHBIX BEPCUil pa3MeTOK rpa)oB MOKHO HAWTU B 2JIEKTPOHHOM
KXypHane A dynamic survey of graph labeling non penakumeit [1. [ammmana.

Lens cTatbm — TMOJNYYNTH HOBBIE CBOWCTBA rpadoB, MOMYCKAIOIINX AUCTAHIIMOHHBIE Marnyeckue W aHTUMarmde-
CKUe pa3MeTKH, a TaKxKe pa3padboTaTh aJiTOPUTM MTOCTPOCHMUSI F-PETYJISIpHOTO raHnukarn rpada G = (V, E) nopsiaka n, tae
n= 0(mod8),r=1,3(mod4)u3<r<n—>35.

Mertoapl. Vcrionb3oBaHbl METOABI TeOpUM TpadoB, TEOPUM MHOXKECTB, MATPUYHOTO aHAIM3a MPU MCCIEAOBAHUU
cBoOMCTB TpacoB, 00TadAIONINX pa3MeTKaMU Marndeckoro tuma. [1pu pa3paboTke airoputMa MoCTPOEHUSI PEryIsipHOTO
ra’nukan rpada 3amneiicTBOBaHbI METOIbI TEOPUU PA3IOXKEHU rpacdOB U TEOPUU AITOPUTMOB.

Pesyasratsl. [IpoBeneHo uccienoBaHue cBOUCTB D-TUCTAHIIMOHHBIX Marn4ecKux rpadoB 1 MoKa3aHo, eCId BEPIIUH-
Haa pazMeTka f rpada G aBisgerca D-IMCTaHIMOHHON Marum4eckoi, To mis D-Hanrpada G, Guekuus f opoXIaeT Iuc-
TAHLIMOHHYIO0 MarudecKyio pasMeTky npu 0 ¢ D u (k—n, 1)-AucTaHUIMOHHYIO aHTUMarndeckyio pazmetky nipu 0 € D. Ha
MHOXeCTBe M Bcex D -TMCTAHIIMOHHbBIX Maru4eckux rpados, rae i = 1, 2, ..., BBeieHo OuHapHoe oTHoweHne R < M x M .
IMosToMy oBOy MOTyUYeH Psifi PE3yJIBTaTOB:

1) R aBnsieTCSI OTHOIIEHUEM SKBUBAJICHTHOCTU Ha M,

2) ecim G u H — D, -, D,-IMCTaHUMOHHbBIE Marndeckue rpadpl, cootBetcTBenHo, u 0 ¢ D, 0 € D, mm 0 € D,
0 ¢ D,, To G v H npuHaiexar K pa3HbIM KJIaccaM 3KBUBAJIEHTHOCTH (pakTop MHOXecTBa M/R;

3) ecin GR~ H , TO MX COOTBETCTBYIOIIME Haarpadsl G o ¥ H Dy U30MOpPGhHBI;

4) ecnru G n M H p, ABIAIOTCA n3oMopbHbBIMU HaarpadaMy COOTBETCTBYIOLIMX MarumyeckKMx IUCTAaHLIMOHHO-
10106HEIX rpadoB G u H, 1o cymectsyior Takue rpadet H* < Gp u G*c Hjy ,uto G=G*u H = H*.

[pennoxeH alropuTM IOCTPOEHHUS /r-PETYIAPHOrO ranamkan rpaga G =(V,E) nopanka n, rae n = 0(mod 8),
r=1,3(mod 4) u 3 <r<mn— 5, npuBeneHa OLIEHKA €r0 TPYTOEMKOCTH.

BbiBoabl. YcTaHOBIIEHA CBS3b MEXIY BEpIIMHHBIMU pa3MeTKaM1 Marnyeckoro Turia rpacda u ero Haarpada. [TonxydyeHo
OIMKMCaHKUE OTHOLIEHHUS SKBUBAJICHTHOCTU HA MHOXKECTBE BCEX D, -IMCTAHLMOHHBIX MArHYECKKX IPa)OB 1 UCCIIEN0BAHDI
cBolicTBa TpadoB, HAXOISIIMXCSI B 9TOM OTHOIIEHUH. Pe3yabraTsl nccienoBaHus TOAE3HbI 711 aTbHEIIIero pa3BUTHS
JTAHHOI TEMaTUKM U PACIIUPSIOT KPYT MPUMEHEHMH rpacoB C pa3MeTKOI Marmyeckoro THra.

Karoueesnie caosa: epagp, D-oucmanyuonnas maeuueckas pasmemia, (a, d)-0ucmaHyuoHHAs AHMUMAUYECKAs PA3MemKa,
eanouxan pasmemka, D-oucmanyuonnas mampuya, omroulenue skeugaieHmuocmu, 1-gpaxmop.
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