Control Systems and Computers, N2-3, 2021, Article 4

https://doi.org/10.15407/csc.2021.02.040

Control Systems and Computers, 2021, Issue 2-3 (292-293), pp. 40-51.

UDC 004.274

O.O. Barkalov, Doctor of Technical Sciences, Professor, Computer Science and
Telecommunications University of Zielona Gora (Poland), Podgorica str., 50, Zielona Gora, 65246, Poland, A.Barkalov@iie.uz.zgora.pl

L.O. Titarenko, Doctor of Technical Sciences, Professor, Computer Science and
Telecommunications University of Zielona Gora (Poland), Podgorna str., 50, Zielona Gora, 65246, Poland, L.Titarenko@iie.uz.zgora.pl

O.M. Golovin, Ph.D. Eng. Sciences, Senior Research Associate, V.M. Glushkov Institute
of Cybernetics of the NAS of Ukraine, 03187, Kyiv, Glushkov Avenue, 40, Ukraine, o.m.golovin.1@gmail.com

O.V. Matvienko, Researcher Associate, V.M. Glushkov Institute of Cybernetics of
the NAS of Ukraine, 03187, Kyiv, Glushkov Avenue, 40, Ukraine, matv@online.ua

Optimization of a Composition Microprogram Control Unit
with Elementary Circuits

Introduction. The control unit coordinating interaction of all other blocks of a digital system is one of the central blocks and is a sequential circuit. As a rule, when synthesizing control unit circuits, the problem arises of reducing hardware costs. Methods for solving this problem depend on features of both the architecture of the control unit and the elemental basis.

Purpose. The main goal of this work is to reduce hardware costs and power consumption of control units of digital systems by taking into account features of the element base of the control unit and rational organization of addressing microinstructions. FPGA (field-programmable logic array) microcircuits, widely used for the implementation of modern digital systems, were chosen as an elementary basis.

Methods. Methods of set theory, synthesis of automata, and software modeling as well as the library of standard automata and FPGA Virtex-7 from Xilinx were used for assessment the effectiveness of solving the problem.

Results. The paper proposes a method for optimizing the circuit of the microinstruction addressing unit based on splitting the set of outputs of elementary linear operator circuits, which is based on the idea of double coding of states. The proposed method, under certain conditions, makes it possible to reduce the number of levels in the microinstruction addressing circuit to two.

Conclusion. Studies have shown that double coding of states can increase performance, reduce hardware costs (the number of LUTs and their interconnections) and power consumption in Mealy’s circuitry. Based on these results, it can be expected that, with the number of conditions exceeding the number of LUT inputs, the proposed approach will improve characteristics of the composition microprogram control unit in comparison with the equivalent control unit U1.

 Download full text! (On Ukrainian)

Keywords: composition microprogram control device, microinstruction, LUT, EMB, synthesis.

  1. Soloviev V. V., 2001. Proyektirovaniye tsifrovykh skhem na osnove programmiruyemykh logicheskikh integralnykh skhem [Design of digital circuits based on programmable logic integrated circuits], Hotline – TELECOM, Moscow, 636 p. (In Russian).
  2. DeMicheli G., 1994. Synthesis and optimization of digital circuits, McGraw-Hill, New York, 576 p.
  3. Baranov S., 1994. Logic synthesis for control automata, Kluwer Academic Publishers, Dordrecht, 312 p.
    https://doi.org/10.1007/978-1-4615-2692-6
  4. Barkalov A. A., Titarenko L. A., 2007. Sintez kompozitsionnykh mikroprogrammnykh ustroystv upravleniya [Synthesis of composite microprogram control devices], Collegium, Kharkov, 304 p. (In Russian).
  5. Maxfield C., 2004. The design warrior’s guide to FPGAs. Academic Press, Orlando, 542 p.
  6. “White paper FPGA architecture”. [online] Available at: <www.altera.com>.
  7. Sklyarov V., Skliarova I., Barkalov A., Titarenko L., 2014. Synthesis and optimization of FPGA-based systems. Springer, Berlin, 432 p.
    https://doi.org/10.1007/978-3-319-04708-9
  8. Grout I., 2008. Digital systems design with FPGAs and CPLDs, Elsevier, Amsterdam, 784 p.
  9. Garcia-Vargas I., Senhadji-Navarro R., Jimenez-Moreno G., Civit-Balcells A., Guerra-Gutierrezz P., 2007. “ROM-based finite state machines implementation in low cost FPGAs”, IEEE Intern. Simp. on Industrial Electronics (ISIE’07), Vigo, 2007, pp. 2342-2347.
    https://doi.org/10.1109/ISIE.2007.4374972
  10. Skliarova I., Sklyarov V., Sudnitson A., 2012. Design of FPGA-based circuits using hierarchical finite state machines, TUT Press, Tallinn, 240 p.
  11. Barkalov A., Titarenko L., Mielcatek K., 2018. “Hardware reduction for LUT-based Mealy FSMs”, International Journal of Applied Mathematics and Computer Science, 28 (3), pp. 595-607.
    https://doi.org/10.2478/amcs-2018-0046
  12. Barkalov A., Titarenko L., 2009. Logic synthesis for FSM-based control units. Springer, Berlin, 233 p.
    https://doi.org/10.1007/978-3-642-04309-3
  13. Grushnitskiy R. I., Mursaev A. Kh., Ugryumov E. P., 2002. Proyektirovaniyesistem s ispolzovaniyem mikroskhemprogrammiruyemoy logiki [Designing systems using programmable logic chips], BHV-Petersburg, St. Petersburg, 608 p. (In Russian).
  14. Tiwari A., Tomko K., 2004. “Saving power by mapping finite state machines into embedded memory blocks in FPGAs”, Proc. Design, Automation and Test in Europe Conference and Exhibition, Paris, France, 6-20 Feb. 2004, 2, pp. 916-921.
  15. Garcia-Vargas L., Senhaji-Navarro R., 2015. “Finite state machines with input multiplexing: A performance study”, IEEE Transactions on CAD of Integrated Circuits and Systems, 34 (5), pp. 867-871.
    https://doi.org/10.1109/TCAD.2015.2406859
  16. Rawski M., Selvaraj H., Luba T., 2005. “An application of functional decomposition in ROM-based FSM implementation in FPGA devices”, Journal of System Architecture, 51 (6-7), pp. 424-434.
    https://doi.org/10.1016/j.sysarc.2004.07.004
  17. “Vivado Design Suite”, Xilinx. [online] Available at: <https://www.xilinx.com/products/design-tools/vivado.html>.
  18. Yang S., 1991. Logic synthesis and optimization benchmarks user guide. Version 3.0. Techn. Rep. Microelectronics Center of North Carolina, 43 p.
  19. “Virtex-7 FPGAs”, Xilinx. [online] Available at: <https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html>.
  20. Barkalov A. A., Titarenko L. A., Efimenko K. N., 2011. “Optimizatsiya skhem kompozitsionnykh mikroprogrammnykh ustroystv upravleniya” [“Optimization of the circuits of composite microprogram control devices”], Cybernetics and Systems Analysis, 1, pp. 179-188. [online] Available at: <http://dspace.nbuv.gov.ua/bitstream/handle/123456789/72212/15-Barkalov.pdf?sequence=1> (In Russian).
  21. Barkalov A. A., Titarenko L. A., 2011. “Preobrazovaniye kodov v kompozitsionnykh mikroprogrammnykh ustroystvakh upravleniya” [“Converting codes in composite microprogram control devices”], Cybernetics and Systems Analysis, 5, pp. 107-118. [online] Available at: <http://dspace.nbuv.gov.ua/bitstream/handle/123456789/84238/09-Barkalov.pdf?sequence=1> (In Russian).
  22. Barkalov A. A., Titarenko L. A., Vizor Ya. E., Matviienko A. V., 2016. “Optimalnoye kodirovaniye sostoyaniy v sovmeshchennom avtomate” [“Optimal coding of states in a combined automaton”], Upravlyayushchiye sistemy i mashiny, 6, pp. 34-39. DOI: 10.15407/usim.2016.06.034 (In Russian).
    https://doi.org/10.15407/usim.2016.06.034
  23. Barkalov A. A., Titarenko L. A., Vizor Ya. E., Matvienko A. V., 2016. “Umensheniye chisla LUT elementov v scheme sovmeshchennogo avtomata” [“Reducing the number of LUT elements in the combined machine circuit”], Upravlyayushchiye sistemy i mashiny, 3, pp. 16-22. DOI: 10.15407/usim.2016.03.016 (In Russian).
    https://doi.org/10.15407/usim.2016.03.016
  24. Barkalov A. A., Titarenko L. A., Vizor Ya. E., Matvienko A. V., 2017. “Umensheniye apparaturnykh zatrat v sovmeshchennykh avtomatakh” [“Reduction of hardware costs in combined machines”], Upravlyayushchiye sistemy i mashiny, 4, pp. 43-50. DOI: 10.15407/usim.2017.04.043 (In Russian).
    https://doi.org/10.15407/usim.2017.04.043

Received 15.02.2021