Control Systems and Computers, N4, 2017, Article 3

 
Upr. sist. maš., 2017, Issue 4 (270), pp. 24-31.
 
UDC 629.735.051’622
 
Komnatska Marta M., PhD in Techn. Sciences, Associate Professor, E-mail: martakomnatska@gmail.com;
 
Bondarenko Dmytro P., Student in the fifth year of study, E-mail: neverpooh@gmail.com,
 
Aircraft control systems Department, National Aviation University, Kyiv, Ukraine

 Intelligent Flight Control System Design for the Small UAV Based on the Adaptive Neuro-Fuzzy Inference System

The paper considers a problem of flight control system design for small unmanned aerial vehicle with elements of intelligent control.
The design procedure is illustrated by an example of unmanned aerial vehicle longitudinal control with application of adaptive neuro-fuzzy inference model.

 
 Keywords: flight control system; successive loop control, fuzzy control, adaptive neuro-fuzzy inference system, gradient descent algorithm, back propagation technique.  
 
  1. Austin, R., 2010. Unmanned Aircraft Systems: UAVS Design, Development and Deployment. John Wiley & Sons Ltd, Chichester, UK, 332 p.
    https://doi.org/10.1002/9780470664797
  2. Beard, R.W., McLain, T.W., 2012. Small Unmanned Aircraft. Theory and Practice. Princeton University Press, Princeton, 300 p.
  3. McLean, D., 1990. Automatic Flight Control Systems. Englewood: Prentice Hall Inc., 593 p.
  4. Tunik, A.A., Lee, H.C., Ryu, H., 2001. “Parametric optimization procedure for robust flight control system design”. KSAS (Korean Society on Aerospace Science), 2 (2), pp. 95–107.
  5. Tunik, A.A., Abramovich, E.A., 2004. “Multi-model approach to parametric robust optimization of digital flight control systems”. J. Automation and Information Sciences, 36(3), pp. 25–34.
    https://doi.org/10.1615/JAutomatInfScien.v36.i3.30
  6. Kwakernaak, H., 1993. “Robust control and H optimization –Tutorial Paper”. Automatika, 29 (2), pp. 255–273.
    https://doi.org/10.1016/0005-1098(93)90122-A
  7. Syrmos, V.L., Abdallah, C., Dorato, P. et al., 1997. “Static output feedback: A Survey”. Automatica, 33, pp. 125–137.
    https://doi.org/10.1016/S0005-1098(96)00141-0
  8. Prempain, E., Postlethwaite, I., 2001. “Static output feedback stabilization with H performance for a class of plants”. Systems & Control Letters, 43 (3), pp. 159–165.
    https://doi.org/10.1016/S0167-6911(01)00087-1
  9. Toscano, R., Lyonnet, P., 2007. “Design of a robust static output feedback controller in the case of multiple parametric uncertainties”. Transactions of the Institute of Measurement and Control, 29 (1), pp. 71–75.
    https://doi.org/10.1177/0142331207076371
  10. Luenberger, D., 1966. “Observers for multivariable systems”. IEEE Trans. Autom. Control, 2, pp. 190–197.
    https://doi.org/10.1109/TAC.1966.1098323
  11. Luenberger, D., 1971. “Introduction to observers”. IEEE Trans. Autom. Control, 6, pp. 596–602.
    https://doi.org/10.1109/TAC.1971.1099826
  12. Komnatska, M.M., 2015. “Optimal guaranteed cost control of aircraft motion”. Electronics and Control Systems, 2(44), pp. 46–50.
    https://doi.org/10.18372/1990-5548.44.8887
  13. Komnatska, M.M., 2013. “Flight control system design via LMI-approach”. Electronics and Control Systems, 3(37), pp. 49–52.
  14. Komnatska, M.M., 2015. “Observer-based flight control system design under LMI approach”. Electronics and Control Systems, 1(43), pp. 46–51.
    https://doi.org/10.18372/1990-5548.43.8851
  15. Iwasaki, T., Skelton, R.E., 1994. “Linear quadratic suboptimal control with static output feedback”. Systems & Control Letters, 23 (6), pp. 421–430.
    https://doi.org/10.1016/0167-6911(94)90096-5
  16. Tunik, A.A., Touat, M.A., 2006. “Hard and soft computing in the robust flight control systems”. Appl. Comput. Math., 5 (2), pp. 166–180.
  17. Schram, G., Verbruggen, H.B., 1997. “A fuzzy control approach”. Chapter 26 “Robust Flight Control. Design Challenge”. Berlin: Heidelberg, New York: Springer-Verlag, pp. 397–419.
    https://doi.org/10.1007/BFb0113870
  18. Tunik, A.A., Komnatska, M.M., 2014. “On structures of combined UAV flight control systems with elements of fuzzy logics”. Electronics and Control Systems, 3(41), pp. 20–28.
    https://doi.org/10.18372/1990-5548.41.7770
  19. Komnatska, M.M, Tunik, A.A., 2009. “Robust stabilization and optimization of flight control system with state feedback and fuzzy logics”. Proceedings of the National Aviation University, 4, pp. 33–41.
    https://doi.org/10.18372/2306-1472.41.1792
  20. Stevens, B.L., Lewis, F.L., 1992. Aircraft Control and Simultion. John Wiley & Sons. Inc., 1992. 680 p.
  21. Passino, K.M., Yurkovich, S., 1998. Fuzzy Control. Addison – Wesley Longman Inc., 502 p.
  22. Ronald, R. Yager, Dimitar, P. Filev, 1994. Essentials of Fuzzy Modeling and Control. John Wiley & Sons Inc, 386 p.
  23. Jang, J.S.R., 1993. “ANFIS: Adaptive network-based fuzzy inference system”. IEEE Transactions on Systems, Man, and Cybernetics, 23, pp. 665–685.
    https://doi.org/10.1109/21.256541
  24. Sarhan, A., Shiyin, Q., 2016. “Autonomous intelligent flight control of fixed-wing UAV based on adaptive neuro-fuzzy inference system”. Int. J. of Research in Engineering and Technology, 5 (9), pp. 92–100.
    https://doi.org/10.15623/ijret.2016.0509014
  25. Touat, M.A., Tunik, A.A., 2008. “Design of UAV robust autopilot based on adaptive neuro-fuzzy inference system”. Proceedings of the National Aviation University, 4, pp. 9–17.
    https://doi.org/10.18372/2306-1472.37.1624
  26. Rutkowska, D., 2002. Neuro-fuzzy architectures and hybrid learning. Heidelberg – New York: Physica-Verl., 2002. 242 p.
    https://doi.org/10.1007/978-3-7908-1802-4
  27. Moorhouse, D.J., Woodcock, R.J., 1982. “Background information and user guide for MIL-F-8785C”, Military Specification – Flying Qualities of Piloted Airplanes. Flight Dynamic Laboratory. July 1982, pp. 161–198.

Received 18.07.2017